-
Notifications
You must be signed in to change notification settings - Fork 975
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #842 from Vinkle-hzt/main
support online onnx to trt conversion
- Loading branch information
Showing
4 changed files
with
147 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
import os | ||
import torch | ||
import tensorrt as trt | ||
import logging | ||
import threading | ||
|
||
|
||
_min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2,), (2, 80), (2, 80, 4)] | ||
|
||
_opt_shape = [(2, 80, 193), (2, 1, 193), (2, 80, 193), (2,), (2, 80), (2, 80, 193)] | ||
|
||
_max_shape = [(2, 80, 6800), (2, 1, 6800), (2, 80, 6800), (2,), (2, 80), (2, 80, 6800)] | ||
|
||
|
||
class EstimatorTRT: | ||
def __init__(self, path_prefix: str, device: torch.device, fp16: bool = True): | ||
self.lock = threading.Lock() | ||
self.device = device | ||
with torch.cuda.device(device): | ||
self.input_names = ["x", "mask", "mu", "t", "spks", "cond"] | ||
self.output_name = "estimator_out" | ||
|
||
onnx_path = path_prefix + ".fp32.onnx" | ||
precision = ".fp16" if fp16 else ".fp32" | ||
trt_path = path_prefix + precision +".plan" | ||
|
||
self.fp16 = fp16 | ||
self.logger = trt.Logger(trt.Logger.INFO) | ||
self.trt_runtime = trt.Runtime(self.logger) | ||
|
||
save_trt = not os.environ.get("NOT_SAVE_TRT", "0") == "1" | ||
|
||
if os.path.exists(trt_path): | ||
self.engine = self._load_trt(trt_path) | ||
else: | ||
self.engine = self._convert_onnx_to_trt(onnx_path, trt_path, save_trt) | ||
|
||
self.context = self.engine.create_execution_context() | ||
|
||
def _convert_onnx_to_trt( | ||
self, onnx_path: str, trt_path: str, save_trt: bool = True | ||
): | ||
logging.info("Converting onnx to trt...") | ||
|
||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) | ||
builder = trt.Builder(self.logger) | ||
network = builder.create_network(network_flags) | ||
parser = trt.OnnxParser(network, self.logger) | ||
config = builder.create_builder_config() | ||
|
||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB | ||
if (self.fp16): | ||
config.set_flag(trt.BuilderFlag.FP16) | ||
|
||
profile = builder.create_optimization_profile() | ||
|
||
# load onnx model | ||
with open(onnx_path, "rb") as f: | ||
if not parser.parse(f.read()): | ||
for error in range(parser.num_errors): | ||
print(parser.get_error(error)) | ||
exit(1) | ||
|
||
# set input shapes | ||
for i in range(len(self.input_names)): | ||
profile.set_shape( | ||
self.input_names[i], _min_shape[i], _opt_shape[i], _max_shape[i] | ||
) | ||
|
||
tensor_dtype = trt.DataType.HALF if self.fp16 else trt.DataType.FLOAT | ||
|
||
# set input and output data type | ||
for i in range(network.num_inputs): | ||
input_tensor = network.get_input(i) | ||
input_tensor.dtype = tensor_dtype | ||
|
||
for i in range(network.num_outputs): | ||
output_tensor = network.get_output(i) | ||
output_tensor.dtype = tensor_dtype | ||
|
||
config.add_optimization_profile(profile) | ||
engine_bytes = builder.build_serialized_network(network, config) | ||
|
||
# save trt engine | ||
if save_trt: | ||
with open(trt_path, "wb") as f: | ||
f.write(engine_bytes) | ||
print("trt engine saved to {}".format(trt_path)) | ||
|
||
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes) | ||
return engine | ||
|
||
def _load_trt(self, trt_path: str): | ||
logging.info("Found trt engine, loading...") | ||
|
||
with open(trt_path, "rb") as f: | ||
engine_bytes = f.read() | ||
engine = self.trt_runtime.deserialize_cuda_engine(engine_bytes) | ||
return engine | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
mask: torch.Tensor, | ||
mu: torch.Tensor, | ||
t: torch.Tensor, | ||
spks: torch.Tensor, | ||
cond: torch.Tensor, | ||
): | ||
with self.lock: | ||
with torch.cuda.device(self.device): | ||
self.context.set_input_shape("x", (2, 80, x.size(2))) | ||
self.context.set_input_shape("mask", (2, 1, x.size(2))) | ||
self.context.set_input_shape("mu", (2, 80, x.size(2))) | ||
self.context.set_input_shape("t", (2,)) | ||
self.context.set_input_shape("spks", (2, 80)) | ||
self.context.set_input_shape("cond", (2, 80, x.size(2))) | ||
# run trt engine | ||
self.context.execute_v2( | ||
[ | ||
x.contiguous().data_ptr(), | ||
mask.contiguous().data_ptr(), | ||
mu.contiguous().data_ptr(), | ||
t.contiguous().data_ptr(), | ||
spks.contiguous().data_ptr(), | ||
cond.contiguous().data_ptr(), | ||
x.data_ptr(), | ||
] | ||
) | ||
return x | ||
|
||
def __call__( | ||
self, | ||
x: torch.Tensor, | ||
mask: torch.Tensor, | ||
mu: torch.Tensor, | ||
t: torch.Tensor, | ||
spks: torch.Tensor, | ||
cond: torch.Tensor, | ||
): | ||
return self.forward(x, mask, mu, t, spks, cond) |