-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
197 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import logging | ||
|
||
import torch | ||
import triton | ||
import triton.language as tl | ||
|
||
from ..utils import libentry | ||
|
||
|
||
@libentry() | ||
@triton.autotune( | ||
configs=[ | ||
triton.Config({"BLOCK_SIZE": k}, num_warps=w) | ||
for w in [4, 8, 16, 32] | ||
for k in [512, 1024, 2048, 4096] | ||
], | ||
key=[ | ||
"max_tile_elems", | ||
], | ||
) | ||
@triton.jit | ||
def vstack_kernel( | ||
itensor_ptr0, | ||
itensor_ptr1, | ||
itensor_ptr2, | ||
itensor_ptr3, | ||
output_ptr, | ||
local_row0, | ||
local_row1, | ||
local_row2, | ||
local_row3, | ||
exc_row_offset0, | ||
exc_row_offset1, | ||
exc_row_offset2, | ||
exc_row_offset3, | ||
total_row_offset, | ||
row_stride, | ||
max_tile_elems, | ||
BLOCK_SIZE: tl.constexpr, | ||
): | ||
pid_x = tl.program_id(axis=0) | ||
tensor_idx = tl.program_id(axis=1) | ||
col_idx = tl.arange(0, BLOCK_SIZE) | ||
|
||
intensor_ptr = tl.where(tensor_idx == 0, itensor_ptr0, itensor_ptr1) | ||
intensor_ptr = tl.where(tensor_idx == 2, itensor_ptr2, intensor_ptr) | ||
intensor_ptr = tl.where(tensor_idx == 3, itensor_ptr3, intensor_ptr) | ||
base_exc_row_idx = tl.where(tensor_idx == 0, exc_row_offset0, exc_row_offset1) | ||
base_exc_row_idx = tl.where(tensor_idx == 2, exc_row_offset2, base_exc_row_idx) | ||
base_exc_row_idx = tl.where(tensor_idx == 3, exc_row_offset3, base_exc_row_idx) | ||
local_row = tl.where(tensor_idx == 0, local_row0, local_row1) | ||
local_row = tl.where(tensor_idx == 2, local_row2, local_row) | ||
local_row = tl.where(tensor_idx == 3, local_row3, local_row) | ||
|
||
grid_stride_x = tl.num_programs(axis=0) * BLOCK_SIZE | ||
start_idx = pid_x * BLOCK_SIZE | ||
end_idx = (local_row * row_stride).to(tl.int64) | ||
for r in range(start_idx, end_idx, grid_stride_x): | ||
idx = r + col_idx | ||
offset_mask = idx < end_idx | ||
in_offset = intensor_ptr + idx | ||
row_stride_offset = (total_row_offset + base_exc_row_idx) * row_stride | ||
out_offset = output_ptr + row_stride_offset + idx | ||
out = tl.load(in_offset, mask=offset_mask) | ||
tl.store(out_offset, out, mask=offset_mask) | ||
|
||
|
||
def vstack(tensors: list[torch.Tensor]): | ||
logging.debug("GEMS VSTACK") | ||
|
||
num_tensors = len(tensors) | ||
assert num_tensors > 0 | ||
|
||
# Ensure all tensors are on the same device and have the same dtype | ||
device = tensors[0].device | ||
dtype = tensors[0].dtype | ||
for tensor in tensors: | ||
assert ( | ||
tensor.device == device | ||
and tensor.dtype == dtype | ||
and tensors[0].shape[1:] == tensor.shape[1:] | ||
) | ||
|
||
c_tensors = [t.contiguous() for t in tensors] | ||
# Calculate the output shape | ||
total_rows = sum(tensor.shape[0] for tensor in c_tensors) | ||
output_shape = list(c_tensors[0].shape) | ||
output_shape[0] = total_rows | ||
output = torch.empty(output_shape, device=device, dtype=dtype) | ||
row_stride = c_tensors[0].stride(0) | ||
|
||
outer_iters = triton.cdiv(num_tensors, 4) | ||
total_row_offset = 0 | ||
for i in range(outer_iters): | ||
max_rows = 1 | ||
itensors = [] | ||
exclusive_row = [] | ||
local_row = [] | ||
array_row_offset = 0 | ||
scheduled_num_tensors = 0 | ||
for j in range(4): | ||
tensor_idx = i * 4 + j | ||
if tensor_idx < num_tensors: | ||
scheduled_num_tensors += 1 | ||
itensors.append(c_tensors[tensor_idx]) | ||
local_row.append(c_tensors[tensor_idx].shape[0]) | ||
exclusive_row.append(array_row_offset) | ||
array_row_offset += c_tensors[tensor_idx].shape[0] | ||
max_rows = max(max_rows, c_tensors[tensor_idx].shape[0]) | ||
else: | ||
empty_tensor = torch.empty( | ||
0, dtype=c_tensors[0].dtype, device=c_tensors[0].device | ||
) | ||
itensors.append(empty_tensor) | ||
local_row.append(local_row[-1]) | ||
exclusive_row.append(exclusive_row[-1]) | ||
max_tile_elems = max_rows * row_stride | ||
grid = lambda META: ( | ||
triton.cdiv(max_tile_elems, META["BLOCK_SIZE"]), | ||
scheduled_num_tensors, | ||
) | ||
# Launch the kernel | ||
with torch.cuda.device(c_tensors[0].device): | ||
vstack_kernel[grid]( | ||
itensors[0], | ||
itensors[1], | ||
itensors[2], | ||
itensors[3], | ||
output, | ||
local_row[0], | ||
local_row[1], | ||
local_row[2], | ||
local_row[3], | ||
exclusive_row[0], | ||
exclusive_row[1], | ||
exclusive_row[2], | ||
exclusive_row[3], | ||
total_row_offset, | ||
row_stride, | ||
max_tile_elems, | ||
) | ||
total_row_offset += array_row_offset | ||
return output |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters