The Featrix Foundation Shell (ffs)
Transform any CSV into a production-ready ML model from the command line.
ffs [global-options] <command> <subcommand> [options] [args]
ffs --server URL # API server (default: https://sphere-api.featrix.com)
ffs --cluster NAME # Compute cluster (burrito, churro, etc.)
ffs --json # Output raw JSON instead of formatted tables
ffs --quiet # Minimal output
ffs model create --name NAME --data FILE [--epochs N] [--ignore-columns COL,COL]
ffs model list [--prefix PREFIX]
ffs model show MODEL_ID
ffs model columns MODEL_ID
ffs model card MODEL_ID
ffs model wait MODEL_ID
ffs model extend MODEL_ID --data FILE [--epochs N]
ffs model encode MODEL_ID RECORD_JSON [--short]
ffs model publish MODEL_ID --org ORG --name NAME
ffs model unpublish MODEL_ID
ffs model deprecate MODEL_ID --message MSG --expires DATE
ffs model delete MODEL_ID
ffs predictor create MODEL_ID --target COLUMN --type {set,scalar} [--name NAME] [--data FILE]
ffs predictor list MODEL_ID
ffs predictor show MODEL_ID [--predictor-id ID]
ffs predictor metrics MODEL_ID [--predictor-id ID]
ffs predictor train-more MODEL_ID --epochs N [--predictor-id ID | --target COLUMN]
ffs predictor remove MODEL_ID {--predictor-id ID | --target COLUMN}
ffs predict MODEL_ID RECORD_JSON [--target COLUMN] [--predictor-id ID]
ffs predict MODEL_ID --file FILE [--target COLUMN] [--sample N]
ffs predict explain MODEL_ID RECORD_JSON [--target COLUMN]
ffs vectordb create MODEL_ID [--name NAME] [--records FILE]
ffs vectordb search MODEL_ID RECORD_JSON [-k N]
ffs vectordb add MODEL_ID --records FILE
ffs vectordb size MODEL_ID
ffs server health
# End-to-end: create model, train predictor, make prediction
ffs model create --name "customers" --data customers.csv
ffs model wait abc123
ffs predictor create abc123 --target churn --type set --rare-label "yes"
ffs model wait abc123
ffs predict abc123 '{"age": 35, "income": 50000}'
# Batch predict from CSV
ffs predict abc123 --file test_data.csv --target churn
# Similarity search
ffs vectordb create abc123 --name "customer_search"
ffs vectordb search abc123 '{"age": 35}' -k 10
# Pipe-friendly
ffs predict abc123 --file input.csv --json | jq '.predictions[].predicted_class'MODEL_ID=session_idin the underlying Featrix Sphere API- CLI wraps the
featrixspherePython package - Built with Click