-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAnimation.cpp
117 lines (95 loc) · 2.47 KB
/
Animation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#include "Animation.h"
Animation::Animation() : m_pause(false), m_current_frame(0), m_frame_count(0)
{
}
Animation::~Animation()
{
}
void Animation::Pause()
{
m_pause = !m_pause;
}
void Animation::Step()
{
if (m_pause)
return;
m_current_frame = (m_current_frame < m_frame_count - 1) ? (m_current_frame + 1): 0;
}
void Animation::setFrames(std::vector<Frame>& frames)
{
m_frames = frames;
PrecomputeFrameData();
}
void Animation::setCurrentFrame(size_t frame_count)
{
m_current_frame = frame_count;
}
void Animation::PrecomputeFrameData()
{
if (m_frames.size() == 0)
return;
for (size_t i = 0; i < m_frames.size(); ++i)
{
std::unordered_map<std::shared_ptr<Joint>, FrameData> joint_framedata_map;
for (auto map_it = m_frames[i].joint_channel_map.begin();
map_it != m_frames[i].joint_channel_map.end();
map_it++)
{
bool movable = false;
auto joint = map_it->first;
auto channels = map_it->second;
const float deg_to_rad = M_PI / 180.0f;
FrameData frame_data;
glm::vec3 translation = glm::vec3(0, 0, 0);
glm::mat4 rot_mat(1);
// Resolve channel
for (size_t j = 0; j < channels.size(); ++j)
{
switch (channels[j].type)
{
case Channel::Channel_Type::X_TRANSLATION:
{
translation.x = channels[j].value;
movable = true;
break;
}
case Channel::Channel_Type::Y_TRANSLATION:
{
translation.y = channels[j].value;
movable = true;
break;
}
case Channel::Channel_Type::Z_TRANSLATION:
{
translation.z = channels[j].value;
movable = true;
break;
}
case Channel::Channel_Type::X_ROTATION:
{
rot_mat = glm::rotate(rot_mat, channels[j].value * deg_to_rad, glm::vec3(1, 0, 0));// *rot_mat;
break;
}
case Channel::Channel_Type::Y_ROTATION:
{
rot_mat = glm::rotate(rot_mat, channels[j].value * deg_to_rad, glm::vec3(0, 1, 0));// *rot_mat;
break;
}
case Channel::Channel_Type::Z_ROTATION:
{
rot_mat = glm::rotate(rot_mat, channels[j].value * deg_to_rad, glm::vec3(0, 0, 1));// *rot_mat;
break;
}
}
}// end of channel for loop
frame_data.movable = movable;
if (movable)
frame_data.translation = translation;
glm::quat rot_quat = glm::quat_cast(rot_mat);
frame_data.quaternion = rot_quat;
joint_framedata_map.emplace(joint, frame_data);
} // end of map iteration
m_frames[i].joint_framedata_map.clear();
m_frames[i].joint_framedata_map = joint_framedata_map;
} // end of frames loop
}