Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 19 additions & 5 deletions guide/14-deep-learning/how_pix2pix_works.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Pix2Pix model architecture shown in figure 4 is translating from simple styled map to target styled map domain. [[4](https://arxiv.org/pdf/1905.02200.pdf)]"
"Pix2Pix model architecture shown in figure 4 is translating from image to map domain. [[4](https://arxiv.org/pdf/1905.02200.pdf)]"
]
},
{
Expand Down Expand Up @@ -202,9 +202,23 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Initially, we have to export the image chips in `Export tiles` format using `Export Training data for deep learning` tool avialable in ArcGIS Pro by providing two domains of imagery in `Input Raster` and `Additional Input Raster`, then the path is provided to `prepare_data` function in `arcgis.learn` to create a databunch, than we have to create a databunch with `prepare_data` function in `arcgis.learn`\n",
"First, we have to create a databunch with `prepare_data` function in `arcgis.learn`\n",
"\n",
"`data = arcgis.learn.prepare_data(path=r\"path/to/exported/data\")`"
"`data = arcgis.learn.prepare_data(path=r\"path/to/exported/data\", dataset_type='Pix2Pix')`\n",
"\n",
"The important parameters to be passed are: \n",
"\n",
"- The path to the Data directory. We need to follow the directory structure shown in figure 2. Here, 'train_a' and 'train_b' folders contain the images of domain A and B.\n",
"- The dataset_type as 'Pix2Pix'."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<img src=\"data:image/PNG; base64, iVBORw0KGgoAAAANSUhEUgAAAUYAAACaCAYAAADVXOEQAAAF8XRFWHRteGZpbGUAJTNDbXhmaWxlJTIwaG9zdCUzRCUyMmFwcC5kaWFncmFtcy5uZXQlMjIlMjBtb2RpZmllZCUzRCUyMjIwMjAtMTAtMTNUMTElM0EyNiUzQTQyLjE3MlolMjIlMjBhZ2VudCUzRCUyMjUuMCUyMChXaW5kb3dzJTIwTlQlMjAxMC4wJTNCJTIwV2luNjQlM0IlMjB4NjQpJTIwQXBwbGVXZWJLaXQlMkY1MzcuMzYlMjAoS0hUTUwlMkMlMjBsaWtlJTIwR2Vja28pJTIwQ2hyb21lJTJGODYuMC40MjQwLjc1JTIwU2FmYXJpJTJGNTM3LjM2JTIyJTIwZXRhZyUzRCUyMlRxSWd1R0ZUZ3lueHdVaE5lSC1TJTIyJTIwdmVyc2lvbiUzRCUyMjEzLjcuOSUyMiUyMHR5cGUlM0QlMjJkZXZpY2UlMjIlM0UlM0NkaWFncmFtJTIwaWQlM0QlMjJ3YWx3c2pXOHJ0cVhJYkZQRV9HQSUyMiUyMG5hbWUlM0QlMjJQYWdlLTElMjIlM0UzVmpMY3Bzd0ZQMGFMJTJCUEJFaTh2R3p2cFk5SnBNcDVwNDI0Nk1paWdWaUJHaUJqeTlaVkFtR0RWanRzNGNja0szYU9yMXptNlYwZ2pPRXZLOXh4bDhXY1dZam9DVmxpTzRId0V3TVJ4TFBsUlNOVWd2dXMzUU1SSnFKMDZZRUVlc0FaMXU2Z2dJYzU3am9JeEtraldCd09XcGpnUVBReHh6dFo5dHp0RyUyQjZObUtNSUdzQWdRTmRGdkpCU3hYa1c3TElWJTJGd0NTSzI1RW5scTVKVU91c2dUeEdJVnMlMkZndURGQ000NFk2SXBKZVVNVTBWZXkwdlQ3bkpIN1daaUhLZmlrQWJmbHpuJTJCT3N1WGxIM2hENkQ2ZEhOVjNadzVlbTZpYWhlTVE3bCUyQmJUSXVZaGF4Rk5HTERqM25yRWhEckhxMXBOWDVYREdXU1hBaXdaOVlpRXFMaVFyQkpCU0xoT3JhWmt3MTBNNmxhQ2huQlElMkZ3bnZtM1d3THhDSXM5Zm1CRHVOeXBtQ1ZZOEVxMjQ1Z2lRZTc3ODBCNnkwUWJ2NDVWV2RERSUyRmdYSnV0OTdSQXM5MGh3SlpEQXZjQ242UkNGS29sU1dBOGtMNWhLNHgxd1F1VG5mNllxRWhHR2pDYzdKQTFyVlhTbFZNa1pTVWElMkZET1I4NWM5V1hsQ0Z2Rk9rMFVQM2hjcjhLSm10dEE2aDN0ZzV0YUd0NzNRVktDOFdQWXFRTmlLUHo3SjVpTTB1eWVIV3Iybzh0ME5yTDJyYTkxcDZYZW9ER3FoNWIxNWdUdVg2bGJ3MGVNVHJBZ2RFQlR4a2QlMkZrbFZPNU95V1haZk4zY291dG1uMUEwWVdlMWpJayUyRkRmUGg1YmVvOG1kZWMxOHhyMDRFZjBzOU5MN3JwdGRLJTJCa3dsNlc4ZlB4TzkzMFlTUGJyVWx3V1lhJTJGNjRLTlBhJTJGNElpa1A0WiUyRnNBUGY2ek5yJTJCYWNOZ1BZeU1OZ0llRzZpUGpBQyUyRkMwQlhqZ0M3QjBSc0hwN0VlQ2QlMkJBaVltSGVJNjJZMXdLV0syaFdYcFVpVkx1VVZWekk2ZEFrbW9IOEsyJTJCQXdDZUNMU1dBbSUyRkVXeDJzViUyRmUlMkJrYnNnSlQ2MGtGM0ZkVndFdzQlMkJ4UUFnMWNBJTJCT0ElMkZVOEExRkRCSXpnVm52emFQWmFEUGR4NmpUUGtsWmFUZUM4ZDNsSzJER0hFeFRnb3F5Rm5JZ2lLcDJUbGZ4MFRnUllicWczVXR2WSUyRkRLZHphMVdCcSUyRnR6WVU1TlQlMkI4VTQ5ZDRjcDlEOXcwdlFxM0xxRzV6V2wxTUozUkg2QnU2bzBKdU90ODlIeCUyQkRjTzg0dmlqUzdaJTJCcm01N0Y3N0ljWHZ3RSUzRCUzQyUyRmRpYWdyYW0lM0UlM0MlMkZteGZpbGUlM0VWs0YDAAAZ90lEQVR4Xu2dXWhUR9jHR4pSbdWWBBQsfiHEOzUtXlSDEYp6U6OpkBYVzU2tVaKiBY3Ej0iLoEVNo2CvIlEwxfpBC9YbjRjvih8UoQGJiUVawVCtVqGt+vKf9332nRz37M45ez73/AeW3ezO53/m/PLMPHPmDHv58uVLxUAFqAAV8KHAjRs31OXLl9XDhw99pA4/ycyZM9W8efPUW2+95amwYQSjJ70YmQpQgf9TYPfu3WrXrl2J12Py5MnqzJkzCpC0DQSjrVKMRwWoQE6B7u5uNX/+fP33hg0bPFtkUUmJesKiBRSvX79uXSzBaC0VI1IBKiAKzJ07V129elWtX79eLVu2LFHCzJgxYwioYTEODAyoS5cuqdraWqu6EoxWMjESFaACUABriUuXLlWwxJIcsKaI6TNAiOk+pv07d+60nvoTjEnuXdaNCiRMgSlTpqj+/n41duxYT2t2UTYDU2cJd+7cUR0dHQRjlB3AsqhAlhQ4ePCg2rRpk8JUFRajV09vVFrBql2yZIleW4SViECLMSr1WQ4VyJACZ8+e1U6Wu3fvqunTp6vx48cnrvWYNosjSCC+atUqhTVGgjFx3cUKUYF0K4CpaGNjYyoaId5n8ZpjDyOASTCmovtYSSqQDgWwnjhr1iztdDlw4EBi1xWh5saNG9XNmzf19BkwxHYigjEd44y1pAKpUgBTaHih6+rqFD4nOUhdAUN4ognGJPcW60YFUqyAn60ucTZ32LBh2imErToEY5w9wbKpQBkrkEYwojuwmZtgLOOByaZRgTgVIBjjVJ9lUwEqkEgFCMZEdgsrRQWoQJwKEIxxqs+yM6HA7du31bRp0zLR1nJpJMFYLj3JdiRSgVu3bqkFCxaoDz74QLW0tHgG5J49e9TUqVPV8uXLrdv37NkzfQvbypUr1Zw5c6zTJT3i119/rT799FM1evTo0KtKMIYuMQvIugLYD/fjjz8qbKkArLZt22YNSD9gLFe9R44cqZ4/f642b96smpubQwUkwViuo4jtSowCsBqrq6vVP//8o15//XV9cdsA8sSJE2rFihW6HcePH1d9fX0KeXV1dem/6+vrtWV49OhRHWfNmjX6Lg0EsRjxub29XX938uRJfRAC0ldVVRXUZ3BwUFupFy5c0PFaW1u1xRtnOHTokNq6dat68eKF/ieDNoYFSIIxzp5m2alSYMuWLerx48e+6vzDDz+o33//PZcWgPz333/Vhx9+qDflugXTYsTne/fuafjBesLfCACWgAyfAWETjDhctaenJ/f9hAkTCkJOpuI1NTUajr29vaqpqUm1tbUVBaovcTwkqqys1G1FGDFiRGiAJBg9dAqjZlsBWClinXlVYu/evQpn5EkA2N544w19n+v27dutwSggdCYw1xWdYARAYX1WVFTod1ieXqw/gAgnVgMWbpZmnM9BGT58uFq8eLE6deqU125xjU8wBiYlMyp3BQBGPw+XvHjxop72Pnr0SFt6cB7gwlu7dm1RyZwWo+mIgSXX0NCgDxCQYFqGmK4jdHZ25qxMWzDi+H5YmhJsp+BFG1RiBFqM+QXE2ETgnS8lDjAm966AXzC+++676pdfflFvv/22NRCldm5gdE53C1mMXsFoTsvh1baxGL2r6T0F1hjhuMIaLdcYh+pHMHofT0wRkAJ+wPjff/+p999/X5/rZ2MhOqtqC0ax8IKwGJ1ghJW5b98+K6dNQFLnzYZeaXd1CcYwRx7zLqiAHzCWKql4psUrbU6lzekuvMYI+F281aVMpU2PONZVr127Fvu+SO5jJBhLvZ6YPgQF4gBjCM1glhYK0PliIRKjUAEoUE5gxBR9x44deTsW0/FyumPGz+glGP2oxjSZVKCcwJjJDvTQaILRg1iMmm0FCMbs9H/awYhDS2D1Hzt2TD8LBu2xCcNe+tmQZpMz45StAgRj2XbtKw1LOxjNBhGM2Rm3sbSUYIxF9lgKTTsYx40bp+7fv6+1IxhjGULZKZRgzE5fpx2MeGIgnh548OBB/ZAs3HpqEziVtlGJcYYoQDBmZ0CkFYyAIJ6FDTB2d3d77jCC0bNkTEAwZmcMxAHGy5cva4EFaPJeW1urv5d3QM8Z5M4X+Z5gzM5Yjb2lBGPsXRBZBaIC47lz51RHR4ee9noJgOTq1atVXV2dnioLGHGEHfKD1UiL0YuijOtbAYLRt3SpSxgmGG/cuKG30QjARBycYATIzZw5c8i704IUyxLpEH/JkiU6LwTZbNPf368mT57sWXdOpT1LxgQEY3bGgIARkMJnWGalBFhwsA7hDAEYTRjC8sMLkLMJyAsWJmBoQtIEo00++eIQjH6Vy3A6gjE7nQ/o4EQkCYAW4LVhwwZPlhhgKBCTvMaOHavzwgvgLSXAMgRsUcbAwICv80LN8gnGUnojo2kJxmx1PCwzABIv8zBgTFHzvWAJIo3zXVSD1YlpL4AYRkA9S82bYAyjZ8o8T4KxzDu4QPMAO4EkTmK3DZMmTdJ7CAFEP2t+tuUEFY9gDErJDOVDMGaosws0FdPXfC+n00T+TpNqBGOaeishdSUYE9IRrEZoChCMoUlbvhkTjOXbt2zZ/ypAMHIkeFaAYPQsGROkTAGCMWUdloTqEoxJ6AXWIUwFCMYw1S3TvAnGMu1YNiunAMHIweBZAYLRs2RMkDIFCMaUdVgSqkswJqEXWIcwFfAFxt7eXtXQ0DBkFzxu/O7q6lJVVVVF62s+PL1o5JAi+H02L9qOe0bb29tVRUVFSLVLdrYEY7L7h7UrXQHfYGxqalJtbW05EOKh5+vWrbOCYxLAOHLkSPX8+XO1efNm1dzcrEaPHm2lJsFYXo9Ptep0RsqcAoGBEcoBeAgtLS3q2bNnatOmTero0aP6uzVr1qgDBw6o06dPqxUrVujvjh8/rurr6/PGA7jCDIcOHVJbt25VL1680Ge4oa42gDTBOGrUKJ2uurpaHTlyRFvQaFNfX59+VvHChQvViRMntGU5ODioli9fri5cuKCb1draqnVCQBxoAqt7wYIFGtLym/ncY+SNPBDwj2ju3Ln6s1lOmJpJ3rQYo1CZZcSpQKBgxMXa2dmpAbh///4cJAUKuNjxKEPTYjRh6owXtjCVlZUaWAgjRoywAmQ+MCI92nzt2jUNKxP4NTU1OfjjM8CGPMTiRlr5jPrgd2gErQDMK1eu6Lzv3r2rly8OHz6spk+frtavX6+n9Fi6QDwEgWbYuhGMYSvM/ONWIDQwmhafWI8rV658BYymAM54buLs3r3b+vmwXgUePny4Wrx4sTp16lTepPnAaALPXH90WzIAjAVsP//8s7YwTesRf2/ZskVbo5I3KiP5LVq0aAgYC7Vx/vz5vk4wLpQnjp76888/vUrL+FQgNQoECsZ8Fo55TFFPT88rYMznyJF4YasYlMUowHeuP5pgNKe+aJc4q7777rucZY0P0NAEoyxFiBYyBTd1k2WKsJcfOJUOe0Qy/6QoECgYZVrstHbcLEZZXxSryNZiDEI8rDFu27ZNO2BKXWMsBkZYeJjmylKCF4tR8i7UZoGpWJ1B6FMoD06lw1aY+cetQGBgNL3SEydOHDINFGvJaTE6weiMF6Y4QXilxfniFYwA2b59+7QHH8FmjfHp06carijrvffeG7JliGuMYY4U5p1FBXyDsdg+RnPqiOkfwtSpU/XFLV5YOClwaKV4V53xwuyQIPYx2oLRbDPahOkxHDUCVNED3mW8njx5ktcrnc+Tjfw4lQ5zpDDvLCrgC4xZFCqKNstSgulwiaJcr2VwKu1VMcZPmwIEY8w95nTKmFZhzFVzLZ5gTGrPsF5BKUAwBqVkhvIhGDPU2RltKsGY0Y4vpdkEYynqMW0aFCAY09BLCasjwZiwDomxOnhqIB52j8elJjHgQVzz5s1TuCnBSyAYvajFuFoBgpEDAQqEeQdakApj58uZM2cUIGkbCEZbpRgvpwDByMHQ3d2tcLspwoYNGzxbZFEpiHrCogUUr1+/bl0swWgtFSOKAgQjxwL2HmNHBe75X7ZsWaIEwe225tQZFuPAwIC6dOmSqq2ttaorwWglEyOZChCM2R0PWEtcunRp4AeTBK0owIjpM0CIg10w7d+5c6f14TMEY9A9koH8CMYMdLJLE6dMmaL6+/v1r3BqJDHAIfTo0SNdtTt37qiOjg6CMYkdVW51IhjLrUft2nPw4EF9BgKAePbs2cSuK8KqhaWIk71gJSLQYrTrY8YqQQGCsQTxUpoUIISTBQcmT5s2Tb3zzjuJawlgKI4gWImNjY1q1apV+jwGgjFx3VV+FSIYy69PC7VIIJOGVov3WbzmsG4BTIIxDb2X8joSjCnvQA/Vx3rirFmz9AZuPGLDy15AD8UEEnXjxo256TNgiO1EBGMg0jITGwUIRhuVyiMOptDwQtfV1el1xSQHqStgCE80wZjk3irDuhGMZdipLk3ys9UlTnUwNmWrDsEYZ09ksGyCMTudnkYwonewmZtgzM44TURLCcZEdEMklSAYI5GZhZSDAgRjOfSiXRsIRjudGIsK8HSdDI0BgjFDnc2mlqYALcbS9EtTaoIxTb3FusaqQBxgxDPL5SmTto0v9Tnlpaa3rafXeH6fcOm1HMQnGP2oxjSZVCAtYCy1c5IKRr/PRPejB8HoRzWmyaQCUYNRnrsNsfEs8r6+PnXr1i3V1dWl/66vr9eHG+B53QjynG18xvd4fjdCe3u7fj958qTCmX1IX1VV5dqHAsbq6mp15MgRfVcFysNzwuMMhw4dUlu3blUvXrzQ671oY3Nzsxo9enTg1SIYA5eUGZarAn7A+Pjx45IuXHMqjc/37t3Tt6jBesLfCC0tLWpwcFCDC58BNBOMOFy1p6cn9/2ECRN0PLcgYMRtcYDzgwcPVFNTk2praysI1Cj6vbKyUrcVYcSIEaEBkmCMojdZRlko4BWM58+fVx999JE++cSvZeMEo4DQKag5/XWCEXkAcBUVFfodlqcNGGtqanJWYrG1zjifgzJ8+HC1ePFiderUqcDGGcEYmJTMqNwV8ApG6AHHyW+//aZee+01X1M/JxhNR0xvb69qaGjQU10JpmUoU+nOzs6clekFjEg/Z84cnXUxMEbV97QY8yuNsYnAO1+iGoksJ6eAHzBiXe+zzz7TJyv7mfq5gVEsRLHqClmMfsHozNu0IOMYFlhj3LZtm3r+/HloU2hpFy3GOHqYZaZSgTFjxqhPPvnEc91hpf3999+5dAAkHAh79+5VmzdvLpifLRjxgCbnWmKpFiMqhvVMHNKahDVGeqXdhwotRs+XJRMEpcC3337rKyuclweLTgIAO27cOA1GeJYLBfFMi1fanEoLDJG+tbVVZ4PfxVtdKhhNrzSm6DKt9iVCAIm4j5FgDGAYMYskKIDnhWzfvl09ffpUAYgTJ07UpyoXA2IS6p7lOnAqneXeZ9tDVwB77F6+fKnwlLkkARFT9B07duRtfxKsw9A7pkgBBGPcPcDyy1YB7DmcPXu2+uabb2ghpqyXCcaUdRirSwWoQPgKpB2MeKIh1oSPHTumH6WK9tiEYS8xv2GgAlSACuRRIO1gNJtEMHKIUwEqEIgCaQcjdj3cv39fa0EwBjIkmAkVoAJpByOeGIinB2JXBB6ShS1jNoFTaRuVGIcKZFSBtIIREMSzsAHG7u5uz71HMHqWjAmoQHYUiAOMly9f1gIL0OS9trZWfy/vgJ4zyJ0v8j3BmJ2xypZSgcgUiAqM586dUx0dHXra6yUAkqtXr1Z1dXV6qixgPHPmjM4PViMtRi+KMi4VoAJFFQgTjDdu3NDbaARgUhkcIgzIzZw5c8i704IUyxLpEH/JkiU6LwTZbIOzNCdPnly0na9Yntyu41kzJqACmVFAwAhI4TMss1ICLDhYh3CGAIwmDGH54QXI2QTkBQsTMDQhaYLRJp98cbjG6Fc5pqMCGVAA0GlsbMy1FNACvHDosBdLDDAUiElmY8eO1XnhBfCWEmAZArYoY2BgIGcx+s2TYPSrHNNRgYwoAMsMgMTLPAwYYMz3giWINM53kQtWJ6a9AGIYAfUsNW+CMYyeYZ5UoEwVAOwEkjh02DZMmjRJ7yEEEL1Ymrb5Bx2PYAxaUeZHBTKiAKav+V5Op4n8nSZZCMY09RbrSgWoQCQKEIyRyMxCqAAVSJMCBGOaeot1pQJUIBIFCMZIZGYhVIAKpEkBgjFNvcW6UgEqEIkCBGMkMrMQKkAF0qQAwZim3mJdqQAViEQBgjESmVkIFaACaVKAYExTb7GuVIAKRKIAwRiJzCyEClCBNClAMKapt1hXKkAFIlGAYIxEZhZCBahAmhQgGNPUW6wrFaACkShAMEYiMwuhAlQgTQoQjGnqLdaVClCBSBQgGCORmYVQASqQJgUIxjT1FutKBahAJAoQjJHIzEKoABVIkwIEY5p6i3WlAlQgEgUIxkhkZiFUgAqkSQGCMU29xbpSASoQiQIEYyQysxAqQAXSpADBmKbeYl2pABWIRIGiYOzt7VUNDQ3q5s2bQyp0/PhxtXz58tArifJ37dql2tvbVUVFRejlBVWAU7c1a9aoAwcOqJEjRxYsYs+ePWrq1KmRaBtUW5OQD/VOQi+UTx2swNjU1KTa2tpUVVWVbvng4KBav369BpZ8F5YkaQSjXKSHDx9Wc+bM0dIAePfu3SsKR4LR+0ii3t41Y4rCCvgC47Nnz9SmTZvUypUr9YV/4sQJtWLFCl3SjBkzVFdXlwYmLvJbt27pv8XCxHc7duzQceU7yW/ChAm531pbW9Xnn3+uLacLFy6ohQsX6nLSYDVevXpVt92sLy5e+Qfz4MED1dnZmYMk4vX19amWlhad7s0339Rtxgs64HsGdwWoN0dH0Ar4AqPzIjchgM8IcpGbVhIAcOXKFQ2Eu3fv6ik6rKrq6moNWgT8du3aNbVu3ToNVIS0TaVhUQPof/zxR+6fhNlxuJALgfH777/X6SorK3U+0FIsz6AHQDnkR73LoReT1QYrMOZbY+zp6cl7sTqtH4GkWIU1NTW59TOZNtbX12swym/mVD2NYJQudrOki4FRNMO7qWeyhk7yakO9k9cnaa2RFRida4xmYwV4R48ezX0t0z9zvSxfPCRA3C1btgyZmpcLGJ1WoljWv/76a0GL0XS+EIz+Li1zek29/WmY5VQlg9GcHsPj6rQY5SJ3rkvmg6usWaYdjNAAwfTam21yrjE6lx9Mi9H8LcsDtVDbqTdHRtAKBArGp0+fahhgPUzWGJ3Wj6wxSlzAUKbS5QJGcw1WvPa4eLGuiHdYMLKGKuuIpmawdsyLnWuMhYc99Q4aC8lcwsF1MXfuXO3gnTdvnpo9e/Yr7AhKiZLBKAvf4jleu3atOn/+vHai7N+//5U9eaZXWqbcTmvStK4EHLLelgavNOrq3Ffn9KqLDvgerydPnuT1Ske1XzSoARVXPtQ7WOWTuISTb2ZQaCZaiiJFwVhK5kxLBahAOhUwwSjOwjFjxqh9+/bpf+SYxWDWgxs/zH/ebg4w08fw8ccfa1GwFxozJaf/IZ9j18wXBhUCZqPO2aZYlfjdvKnC/Mdpbil06x2CMZ3jlrWmAqEq4AQjprAAlmyt6+/vzy0LmU5Ft617pi8C2/EkP4DRXEcH2GSZyXnzSD7/hQlGzC7FUTxx4kTt0MXeaKdzF2VcvHix4P5ggjHU4cXMqUA6FXCC0Qk88R0UujNN8nCCyZz+Tp8+fche3UJT42JgBKzFhwFHsFi6X331lWpubs7dkGLTIwSjjUqMQwUypkC+qbTc629uwzPBOGrUKG2lObfuyR1s4kTMB0b4KMyQb23dBoxyB57kJWv7+NvLXXQEY8YGPJtLBWwU8APGn376aYjFZmsx2p67YANGubW2UBudN1jki2sFRnPh08zE7e4XieN2IIJ4stO0DcX0pkv7ii3iFpsWmGa/zWAtFCeNh20Uak9S9TYX91H/YtdAqf0aV/pSwejcume7xpjvQBDRoBgYzTVGOasBtySDM5jOy6E3ga0xOjdx23ZWuYER7fZyoENUYJTBNH78+NQctFFsDPnZ2B623viHvn37dvXll1/qw0zyHV5RrF1p+d0PGJ3TVXPrHn6TafYXX3yh/vrrr9yan9Mr7bZFrRgY4cgx/3GZW+TcvnfrD2uLsZB14+Yid7slEG50LJSKxVgovfN0nrgGVrELtdCpQbJx3dygumDBAj04zHUbt1OHHj58qA+VyGediBdv9+7d6uTJk6k7t9KtP5Oqt1nfNM584rp+zHLzbchPQr3MOpQMRtP0FVc+XOTOO1/M8whNd72biz3f6TxxilfoQjXvasHtfs5TgwBGtNPtNKHTp08XPHVI9MzaVNrNQk+C3qhbGi7wOK8Zs2zn0kjSlyCswej09oi561zINKcXR44cybsJ05zyuLnY5c4Zr9PXsAZCvjUv6VznkoFA1NymgHqZR405txLYnDqUNTCKBS3tTpLe+U6LCmvsMd/oFbAGo9tU2rn+aDoBBIyLFi1y3asEMLq52CV9FI9QKCa9m8WY7wLJ540rtsfK3OKAuuQ7dajQOkk5Ol/y/VNMgt7mwcpe1pyLjTH+nhwFSgZjEBajm4vdzXkTh3yFptJBWIyyDmm2zct9oFkBI/SJU29ZV0R/JeEfdhzXQhbKLBmMtmuMbu56Nxe72yEUcXVKqWuM5g5/54nl5hpjoVOHsjaVLmWNMQy9OX2O6+qLvtySwYgq+/FK44b0uro6fRO52xQxLRajWDFuXmWnVxrxMXW+ffu2gjcZty/ZnDpEMP6/Al52AQSlt9sTM5PuSIgeK+kv0QqM6W8mW0AFqAAVsFeAYLTXijGpABXIiAIEY0Y6ms2kAlTAXgGC0V4rxqQCVCAjCvwPgmOmjAm+BmUAAAAASUVORK5CYII=\">\n",
"<br>\n",
"<center>Figure 3. Directory structure</center>"
]
},
{
Expand All @@ -215,11 +229,11 @@
"\n",
"`model = arcgis.learn.Pix2Pix(data=data)`\n",
"\n",
"Here data is a fastai databunch, object returned from `prepare_data` function. As `arcgis.learn` is built upon fast.ai, more explanation can be found at fast.ai's docs [[6](https://fastai1.fast.ai/index.html)]\n",
"Here data is a fastai databunch, object returned from `prepare_data` function. As arcgis.learn is built upon fast.ai, more explanation can be found at fast.ai's docs [[6](https://fastai1.fast.ai/index.html)]\n",
"\n",
"Than we can continue with basic `arcgis.learn` workflow.\n",
"\n",
"For more information about the API & model applications, please go to the [API reference](https://developers.arcgis.com/python/api-reference/arcgis.learn.html) and [sample notebook](https://developers.arcgis.com/python/sample-notebooks/generating-rgb-imagery-from-digital-surface-model-using-pix2pix/). "
"For more information about the API & model, please go to the [API reference](https://developers.arcgis.com/python/api-reference/arcgis.learn.html). "
]
},
{
Expand Down