Description
Hi there!
Python 3.8.8
Emukit 0.4.9
I've come across an issue when trying to get_next_points with a context variable for a constrained parameter space. My understanding is that the fact to use context variables passes an array of length n-x (for x context variable) to the constraint function. This function, which is expecting an array of length n, in turns causes it to bug.
Below is an exemple that will cause this issue (modifed from the "Emukit - Bayesian Optimization with Non-Linear Constraints" tutorial)
`FIG_SIZE = (12, 8)
from emukit.test_functions import branin_function
fcn, space = branin_function()
import numpy as np
constraint_radius = 4
constraint_fcn = lambda x: 10 * (-(x[0] - 3)**2 - (x[1] - 7)**2 + constraint_radius ** 2)
optimum = np.array([[-np.pi, 12.275], [np.pi, 2.275], [9.42478, 2.475]])
evaluate objective on grid to plot
x_1 = np.linspace(-5, 10, 50)
x_2 = np.linspace(0, 15, 51)
x_1_grid, x_2_grid = np.meshgrid(x_1, x_2)
x_all = np.stack([x_1_grid.flatten(), x_2_grid.flatten()], axis=1)
y_all = fcn(x_all)
y_reshape = np.reshape(y_all, x_1_grid.shape)
evaluate constraint to plot
theta_constraint = np.linspace(0, 2*np.pi)
x_0_constraint = 3 + np.sin(theta_constraint) * constraint_radius
x_1_constraint = 7 + np.cos(theta_constraint) * constraint_radius
import matplotlib.pyplot as plt
plt.figure(figsize=FIG_SIZE)
plt.contourf(x_1, x_2, y_reshape)
plt.title('Branin Function')
plt.plot(x_0_constraint, x_1_constraint, linewidth=3, color='k')
plt.plot(optimum[:, 0], optimum[:, 1], marker='x', color='r', linestyle='')
plt.legend(['Constraint boundary', 'Unconstrained optima']);
import GPy
from emukit.model_wrappers import GPyModelWrapper
x_init = np.array([[0, 7], [1, 9], [6, 8]])
y_init = fcn(x_init)
model = GPy.models.GPRegression(x_init, y_init)
emukit_model = GPyModelWrapper(model)
from emukit.core.acquisition import Acquisition
from emukit.core.constraints import NonlinearInequalityConstraint
from scipy.special import expit # expit is scipy's sigmoid function
constraints = [NonlinearInequalityConstraint(constraint_fcn, 0, np.inf)]
space.constraints = constraints
from emukit.bayesian_optimization.acquisitions import ExpectedImprovement
ei = ExpectedImprovement(model)
from emukit.bayesian_optimization.loops import BayesianOptimizationLoop
from emukit.core.optimization import GradientAcquisitionOptimizer
Create acquisition optimizer with constraints
acquisition_optimizer = GradientAcquisitionOptimizer(space)
Make BO loop
bo_loop = BayesianOptimizationLoop(space, emukit_model, ei, acquisition_optimizer=acquisition_optimizer)
append plot_progress function to iteration end event
bo_loop.get_next_points(results=None,context={'x2': 3})`
BTW: I love this package! Good work :-)