-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
300 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
|
||
import os | ||
|
||
if __name__ == "__main__": | ||
import sys | ||
sys.path.append(os.path.abspath('')) | ||
|
||
import math | ||
|
||
import torch | ||
from torch.nn import LayerNorm | ||
|
||
from megatron.model.fused_softmax import FusedScaleMaskSoftmax, SoftmaxFusionTypes | ||
|
||
from megatron.model.gpt2_model import gpt2_attention_mask_func as attention_mask_func | ||
|
||
|
||
def test_load_fused_kernels(): | ||
try: | ||
import scaled_masked_softmax_cuda | ||
import scaled_upper_triang_masked_softmax_cuda | ||
import torch | ||
|
||
print("[Success] load_fused_kernels") | ||
except ImportError as e: | ||
print("[Fail] load_fused_kernels") | ||
raise e | ||
|
||
|
||
def test_fused_softmax(): | ||
bert = BertModel.from_pretrained("bert-base-cased").cuda().half() | ||
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | ||
test_text = ( | ||
"Hello. How are you? I am fine thank you and you? yes Good. " | ||
"hi hi hi hi hi hi hi hi hi hi hi hi hi" # 32 | ||
) | ||
|
||
tokens = tokenizer( | ||
[test_text] * 4, | ||
return_tensors="pt", | ||
) | ||
|
||
embedding_output = bert.embeddings( | ||
input_ids=tokens["input_ids"].cuda(), | ||
position_ids=None, | ||
token_type_ids=tokens["token_type_ids"].cuda(), | ||
inputs_embeds=None, | ||
past_key_values_length=0, | ||
) | ||
|
||
# (bsz, 1, 1, seq_len) | ||
mask = bert.get_extended_attention_mask( | ||
attention_mask=tokens["attention_mask"].cuda(), | ||
input_shape=tokens["input_ids"].shape, | ||
device=bert.device, | ||
) | ||
# (bsz, 1, seq_len, seq_len) | ||
mask = mask.repeat(1, 1, mask.size()[-1], 1) | ||
|
||
attention = bert.encoder.layer[0].attention.self | ||
key_layer = attention.transpose_for_scores(attention.key(embedding_output)) | ||
query_layer = attention.transpose_for_scores(attention.query(embedding_output)) | ||
|
||
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | ||
attention_scores /= math.sqrt(key_layer.size()[-1]) | ||
|
||
fused_softmax = ( | ||
FusedScaleMaskSoftmax( | ||
input_in_fp16=True, | ||
input_in_bf16=False, | ||
fusion_type=SoftmaxFusionTypes.general, | ||
mask_func=attention_mask_func, | ||
scale=None, | ||
softmax_in_fp32=False, | ||
) | ||
.cuda() | ||
.half() | ||
) | ||
|
||
fused_softmax_output = fused_softmax( | ||
attention_scores, | ||
(mask != 0), | ||
) | ||
|
||
torch_softmax = ( | ||
FusedScaleMaskSoftmax( | ||
input_in_fp16=True, | ||
input_in_bf16=False, | ||
mask_func=attention_mask_func, | ||
fusion_type=SoftmaxFusionTypes.none, | ||
scale=None, | ||
softmax_in_fp32=False, | ||
) | ||
.cuda() | ||
.half() | ||
) | ||
|
||
torch_softmax_output = torch_softmax( | ||
attention_scores, | ||
(mask != 0), | ||
) | ||
|
||
test_result = (fused_softmax_output - torch_softmax_output).abs() | ||
|
||
while test_result.dim() != 1: | ||
test_result = test_result.mean(dim=-1) | ||
|
||
diff = test_result.mean(dim=-1) | ||
|
||
if diff <= 1e-3: | ||
print( | ||
f"\n[Success] test_fused_softmax" | ||
f"\n > mean_difference={diff}" | ||
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}" | ||
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | ||
) | ||
else: | ||
print( | ||
f"\n[Fail] test_fused_softmax" | ||
f"\n > mean_difference={diff}, " | ||
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, " | ||
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | ||
) | ||
|
||
|
||
def test_fused_upper_triangle_mask_softmax(): | ||
gpt = GPT2Model.from_pretrained("gpt2").cuda().half() | ||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") | ||
test_text = ( | ||
"Hello. How are you? I am fine thank you and you? yes Good. " | ||
"hi hi hi hi hi hi hi" # 24 | ||
) | ||
|
||
tokens = tokenizer( | ||
[test_text] * 4, | ||
return_tensors="pt", | ||
) | ||
|
||
attention_mask = tokens["attention_mask"].cuda() | ||
attention_mask = attention_mask.view(attention_mask.size(0), -1) | ||
attention_mask = attention_mask[:, None, None, :] | ||
attention_mask = (1.0 - attention_mask) * -10000.0 | ||
attention_mask = attention_mask.repeat(1, 1, attention_mask.size()[-1], 1) | ||
attn = gpt.h[0] | ||
|
||
hidden_states = gpt.wte(tokens["input_ids"].cuda()) | ||
q, k, v = attn.attn.c_attn(hidden_states).split(768, dim=-1) | ||
q = attn.attn._split_heads(q, attn.attn.num_heads, attn.attn.head_dim) | ||
k = attn.attn._split_heads(k, attn.attn.num_heads, attn.attn.head_dim) | ||
attn_weights = torch.matmul(q, k.transpose(-1, -2)) | ||
|
||
sq, sk = q.size(-2), k.size(-2) | ||
causal_mask = attn.attn.bias[:, :, sk - sq : sk, :sk].bool() | ||
total_mask = ~(causal_mask & (attention_mask == 0)) | ||
""" | ||
tensor([[[[False, True, True, ..., True, True, True], | ||
[False, False, True, ..., True, True, True], | ||
[False, False, False, ..., True, True, True], | ||
..., | ||
[False, False, False, ..., False, True, True], | ||
[False, False, False, ..., False, False, True], | ||
[False, False, False, ..., False, False, False]]] | ||
""" | ||
|
||
fused_softmax = ( | ||
FusedScaleMaskSoftmax( | ||
input_in_fp16=True, | ||
input_in_bf16=False, | ||
mask_func=attention_mask_func, | ||
fusion_type=SoftmaxFusionTypes.upper_triang, | ||
scale=None, | ||
softmax_in_fp32=False, | ||
) | ||
.cuda() | ||
.half() | ||
) | ||
|
||
fused_softmax_output = fused_softmax( | ||
attn_weights, | ||
total_mask, | ||
) | ||
|
||
torch_softmax = ( | ||
FusedScaleMaskSoftmax( | ||
input_in_fp16=True, | ||
input_in_bf16=False, | ||
fusion_type=SoftmaxFusionTypes.none, | ||
mask_func=attention_mask_func, | ||
scale=None, | ||
softmax_in_fp32=False, | ||
) | ||
.cuda() | ||
.half() | ||
) | ||
|
||
torch_softmax_output = torch_softmax( | ||
attn_weights, | ||
total_mask, | ||
) | ||
|
||
test_result = (fused_softmax_output - torch_softmax_output).abs() | ||
|
||
while test_result.dim() != 1: | ||
test_result = test_result.mean(dim=-1) | ||
|
||
diff = test_result.mean(dim=-1) | ||
|
||
if diff <= 1e-3: | ||
print( | ||
f"\n[Success] test_fused_upper_triangle_mask_softmax" | ||
f"\n > mean_difference={diff}" | ||
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}" | ||
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | ||
) | ||
else: | ||
print( | ||
f"\n[Fail] test_fused_upper_triangle_mask_softmax" | ||
f"\n > mean_difference={diff}, " | ||
f"\n > fused_values={fused_softmax_output[-1][-1][-1][:5].tolist()}, " | ||
f"\n > torch_values={torch_softmax_output[-1][-1][-1][:5].tolist()}" | ||
) | ||
|
||
|
||
def test_layer_norm(): | ||
bert = BertModel.from_pretrained("bert-base-cased").cuda().half() | ||
tokenizer = BertTokenizer.from_pretrained("bert-base-cased") | ||
test_text = ( | ||
"Hello. How are you? I am fine thank you and you? yes Good. " | ||
"hi hi hi hi hi hi hi hi hi hi hi hi hi" # 32 | ||
) | ||
|
||
tokens = tokenizer( | ||
[test_text] * 4, | ||
return_tensors="pt", | ||
) | ||
|
||
# [bsz, seq_len, d_model] | ||
embedding_output = ( | ||
bert.embeddings( | ||
input_ids=tokens["input_ids"].cuda(), | ||
position_ids=None, | ||
token_type_ids=tokens["token_type_ids"].cuda(), | ||
inputs_embeds=None, | ||
past_key_values_length=0, | ||
) | ||
.cuda() | ||
.half() | ||
) | ||
|
||
fused_layernorm_layer = ( | ||
MixedFusedLayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half() | ||
) | ||
|
||
torch_layernorm_layer = ( | ||
LayerNorm(normalized_shape=embedding_output.size(-1)).cuda().half() | ||
) | ||
|
||
fused_output = fused_layernorm_layer(embedding_output) | ||
torch_output = torch_layernorm_layer(embedding_output) | ||
test_result = (fused_output - torch_output).abs() | ||
|
||
while test_result.dim() != 1: | ||
test_result = test_result.mean(dim=-1) | ||
|
||
diff = test_result.mean(dim=-1) | ||
|
||
if diff <= 1e-3: | ||
print( | ||
f"\n[Success] test_layer_norm" | ||
f"\n > mean_difference={diff}" | ||
f"\n > fused_values={fused_output[-1][-1][:5].tolist()}" | ||
f"\n > torch_values={torch_output[-1][-1][:5].tolist()}" | ||
) | ||
else: | ||
print( | ||
f"\n[Fail] test_layer_norm" | ||
f"\n > mean_difference={diff}, " | ||
f"\n > fused_values={fused_output[-1][-1][:5].tolist()}, " | ||
f"\n > torch_values={torch_output[-1][-1][:5].tolist()}" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
try: | ||
from transformers import BertTokenizer, GPT2Tokenizer | ||
from transformers.models.bert.modeling_bert import BertModel | ||
from transformers.models.gpt2.modeling_gpt2 import GPT2Model | ||
import transformers | ||
|
||
transformers.logging.set_verbosity( | ||
transformers.logging.FATAL, | ||
) | ||
|
||
except: | ||
print("\n[Fail] Please install `transformers` package to test fused kernels\n") | ||
exit(-1) | ||
|
||
test_load_fused_kernels() | ||
test_fused_softmax() | ||
test_fused_upper_triangle_mask_softmax() |