Skip to content

EichlerLab/sample_qc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SampleQC

The Snakemake pipeline integrates NTSM and VerifyBamID to verify sample identity and detect potential contamination in sequencing data.

Requirements

  • Snakemake 7+
  • Singularity (or Apptainer) for running the ntsm Docker image
  • Python libraries (for plotting step):
    • pandas
    • numpy
    • seaborn
    • matplotlib

Input Data

Manifest (manifest.tab)

The manifest must include:

  • ID — Unique identifier for each dataset
  • FOFN — File-of-filenames (list of FASTQ/FASTA files)
  • TYPE - Sequencing platform or data type Choose one of the following:
    • PacBio
    • ONT
    • Illumina

Example:

ID	FOFN	TYPE
SampleA	fofn/SampleA.fofn	PacBio
SampleB	fofn/SampleB.fofn	ONT
SampleC	fofn/SampleC.fofn	Illumina

Config (config.yaml)

Important keys:

  • MANIFEST: Path to the manifest file
  • REF_SITE: Reference sites fasta (default: db_source/human_sites_n10.fa, relative to the Snakefile directory)
  • EXTERNAL_COUNTS_DIR: Directory containing external count files (optional)
  • COUNT_FILE_EXP: File extension for the external count files(default: count)

Running the Pipeline

  1. Edit config.yaml and manifest.tab to reflect your datasets.
  2. Run Snakemake:
   ln -s /net/eichler/vol28/software/pipelines/ntsm_smk/runcluster .
   ./runcluster 30

References

About

Snakemake pipeline for running ntsm to check sample contaminations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published