Skip to content

Commit

Permalink
Exemplos da aula sobre série de Taylor e Maclaurim
Browse files Browse the repository at this point in the history
  • Loading branch information
EduardoJM committed Oct 13, 2019
1 parent 5d5833c commit 6b4f276
Showing 1 changed file with 63 additions and 0 deletions.
63 changes: 63 additions & 0 deletions src/latex/notes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -822,4 +822,67 @@ \chapter{Série de Taylor e Maclaurim}
\end{center}
\end{example}

\begin{example}
Encontre a série de Taylor para a função $f(x)=sen(x)$ em torno do ponto $a$.

Utilizando a série
$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n
\text{,}
$$
tem-se,
$$
f(x)=sen(a)+
\frac{cos(a)}{1!}(x-a)-
\frac{sen(a)}{2!}(x-a)^2-
\frac{cos(a)}{3!}(x-a)^3+
\frac{sen(a)}{4!}(x-a)^4+
\frac{cos(a)}{5!}(x-a)^5-
\cdots
\text{.}
$$
\end{example}

\begin{example}
Determine a série de Maclaurim para $f(x)=sen(x)$.

Utilizando a série
$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n
\text{,}
$$
tem-se que
$$
f(x)=sen(0)+
\frac{cos(0)}{1!}x-
\frac{sen(0)}{2!}x^2-
\frac{cos(0)}{3!}x^3+
\frac{sen(0)}{4!}x^4+
\frac{cos(0)}{5!}x^5-
\cdots
$$
$$
f(x)=x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
=
\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}
\text{.}
$$
\end{example}

\begin{example}
Utilizando a série de Maclaurim de $sen(x)$, calcule $sen(x)$ para $x=\frac{\pi}{3}$, $\frac{\pi}{4}$ e $\frac{\pi}{6}$, usando os 4 primeiros termos dessa série.

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
& $\frac{\pi}{3}$ & $\frac{\pi}{4}$ & $\frac{\pi}{6}$ \\
\hline
$sen(x)$ & 0,866025 & 0,7071068 & 0,5 \\
\hline
Maclaurim & 0,866021 & 0,7071065 & 0,499999992 \\
\hline
\end{tabular}
\end{center}
\end{example}

\end{document}

0 comments on commit 6b4f276

Please sign in to comment.