Sacramento suckers in the South Yuba River (source: Sebastian Schwindt 2019).
Background: Water depth and flow velocity rasters can be produced with two-dimensional (2D) hydrodynamic numerical models. In combination, both water depth and flow velocity are hydraulic key drivers of the physical habitat suitability for target fish species at different life stages.
Goals: This exercise guides through the creation of rasters (
osgeo.gdal.Dataset), the usage of georeferences, raster array calculations, as well as the conversion of a raster to a polygon shapefile and modifications to the shapefile's Attribute Table to calculate usable (physical) habitat area. For this purpose, aRasterclass is written, which enables mathematical operations between its instances through the implementation of magic methods. The exercise also shows how the course's geo_utils package can be used to leverage complex challenges in just a few lines of code.
Requirements: Python libraries: numpy, pandas, gdal, geopandas, alphashape, shapely, and json. Understand how object orientation works as well as geospatial data and analyses with Python.
Get ready by cloning the exercise repository:
git clone https://github.com/Ecohydraulics/Exercise-geco.git
Fish and other aquatic species rest, orient, and reproduce in a fluvial environment that represents their physical habitat. Throughout their different life stages, different fish have specific physical habitat preferences which are defined, for instance, as a function of water depth, flow velocity, and grain size of the riverbed. The so-called Habitat Suitability Index HSI can be calculated for hydraulic (water depth or flow velocity) and morphological (e.g., grain size or cover in the form of large wood) parameters individually to describe the quality of physical habitat for a fish and at a specific life stage. The figure below shows exemplary HSI curves for the fry, juvenile and adult life stages of rainbow trout as a function of water depth. The HSI curves look different in every river and should be established individually by an aquatic ecologist.
Habitat Suitability Index (HSI) curves for the fry, juvenile, and adult life stages of rainbow trout in a cobble-bed river. Take care: HSI curves look different in any river and need to be established by an aquatic ecologist.
The HSI concept also accounts for the so-called cover habitat in the form of the cover HSI (HSIcov). Cover habitat is the result of local turbulence caused by roughness elements such as wood, boulders, or bridge piers. However, in this exercise, we will only deal with hydraulic habitat characteristics (not cover habitat).
Adult trout swimming in cover habitat created by a bridge pier in the upper Neckar River.
The combination of multiple HSI values (e.g., water depth-related HSIh, flow velocity-related HSIu, grain size-related HSId, and/or cover HSIcov) results in the combined Habitat Suitability Index cHSI. There are various calculation methods for combining different HSIpar values into one cHSI value, where the geometric mean and the product are the most widely used deterministic combination methods:
- Geometric mean: cHSI = (∏par HSIpar)1/n
For example, the combination of the water depth-related HSIh and flow velocity-related HSIu with the geometric mean method is: cHSI = (HSIh · HSIu)1/2 - Product: cHSI = ∏par HSIpar
For example, the combination of the water depth-related HSIh and flow velocity-related HSIu with the product method is: cHSI = (HSIh · HSIu)
Therefore, if the pixel-based HSI values for water depth and flow velocity are known from a two-dimensional (2D) hydrodynamic model, then for each pixel the cHSI value can be calculated either as the product or geometric mean of the single-parameter HSIpar rasters.
This habitat assessment concept was introduced by Bovee (1986) and Stalnaker (1995). However, these authors built their usable (physical) habitat assessment based on one-dimensional (1D) numerical models that were commonly used in the last millennium. Today, 2D numerical models are the state-of-the-art to determine physical habitat geospatially explicit based on pixel-based cHSI values. There are two different options for calculating the usable habitat area (UHA) based on pixel-based cHSI values (and even more options can be found in the scientific literature).
- Use a threshold value above which a pixel is classified as a usable habitat.
- Typical values for the threshold value cHSIcrit are between 0.4 (tolerant) and 0.75 (strict).
- The usable habitat area UHA results from the pixel size pxa (e.g., in m²) multiplied by the number of pixels (px) where cHSI > cHSIcrit:
UHA = pxa · ∑ pxi|cHSIpxi > cHSIcrit
- Multiply the pixel cHSI value with the pixel size.
- The pixel area is weighted by its habitat quality expressed by the cHSI value:
UHA = pxa · ∑ cHSIpxi - Caution: Some authors (e.g., Yao et al. 2018, Tuhtan et al.) incorrectly refer to this weighting as Weighted Usable Area (WUA), which conflicts with the original definition of WUA (Bovee 1986).
- The pixel area is weighted by its habitat quality expressed by the cHSI value:
Note: The threshold method is preferable over the weighting method because the HSI has the unit of Index and is therefore not dimensionless. As a result, unrealistic units of Index areas (e.g., Index-m²) are created in the weighting method, which is also introducing non-measurable uncertainty.
An alternative to the deterministic calculation of the HSI and cHSI values of a pixel is a fuzzy logics approach (Noack et al. 2013). In the fuzzy logic approach, pixels are classified, for instance, as low, medium, or high habitat quality as a function of the associated water depth or flow velocity using categorical (low, medium, or high), expert assessment-based HSI curves. The cHSI value results from the center of gravity of superimposed membership functions of considered parameters (e.g., water depth and flow velocity).
Sustainable river management involves the challenge of designing aquatic habitat for target fish species at different life stages. The concept of usable physical habitat area represents a powerful tool to leverage the assessment of the ecological integrity of river management and engineering measures. For example, by calculating the usable habitat area before and after the implementation of measures, valuable conclusions can be drawn about the ecological integrity of restoration efforts.
This exercise demonstrates the use of 2D hydrodynamic modeling results to algorithmically evaluate usable habitat area based on the calculation of geospatially explicit cHSI values.
The following flow chart illustrates the provided code and data. Functions, methods, and files to be created in this exercise are highlighted in bold, italic, YELLOW font.
The provided QGIS project file visualize_with_QGIS.qgz helps to verify input raster datasets and results.
This exercise uses (hydraulic) flow velocity and water depth rasters (GeoTIFFs) produced with the ETH Zurich's BASEMENT software. Read more about hydrodynamic modeling with BASEMENT on hydro-informatics.github.io. The hydraulic rasters were produced with the BASEMENT developer's example data from the Flaz River in Switzerland (read more on their website).
The water depth water_depth.tif and flow velocity flow_velocity.tif rasters are provided for this exercise in the folder /basement/.
The /habitat/ folder in the exercise repository contains HSI curves in the form of an xlsx workbook (trout.xlsx) and in the form of a JSON file (trout.json). Both files contain the same data for rainbow trout of a hypothetical cobble-bed river and this exercise only uses the JSON file (the workbook serves for visual verification only).
GEO_UTILS (folder: geo_utils)
A couple of gdal-based functions for processing rasters and shapefiles were introduced in the lecture. This exercise re-uses some of these functions, which are available in the geo-processing code repository specifically for this course.
The name of this geoprocessing repository is geo_utils. Even though already provided in this exercise, make sure that the geo_utils repository is well implemented in the exercise directory (i.e., geo_utils scripts are stored in a folder tree like this: Exercise-geco\geo_utils\). The \geo_utils\ folder corresponds to the geo-utils\geo_utils\ directory when you clone the repository.
Important: Make sure that in the
\geo_utils\geoconfig.pyfile, thenan_valueis defined as 0.0 (nan_value = 0.0).
CONFIG.PY
The code in this exercise uses a config.py file where all necessary libraries and global variables are loaded centrally.
# This is config.py
import os
import logging
import random
import shutil
import string
import json
import numpy as np
import pandas as pd
import geo_utils as geo
cache_folder = os.path.abspath("") + "\\__cache__\\"
par_dict = {"velocity": "u",
"depth": "h",
"grain_size": "d"}
nan_value = 0.0FUN.PY (FUNCTIONS)
At this point in the course, it is assumed that students are familiar with object orientation and especially with writing functions. Therefore, many basic functions for this exercise are already provided with the script fun.py (alphabetically ordered list):
cacheis a wrapper for parent functions to enforce that intermediate geospatial datasets (e.g., the intermediate product of a sum of rasters) are stored in a temporary cache folder that is deleted after the script ran.check_cacheverifies if the cache folder defined inconfig.pyalready exists. The function is automatically called by thecachewrapper.create_random_string(length)generates unique file names for temporary (cached) datasets, wherelengthis an integer value that determines the number of characters of the random string to be created.interpolate_from_list(x_values, y_values, xi_values)linearly interpolates yi values from two sorted lists containing paired x and y values for a list of given xi values (returns anumpy.arrayof the same length asxi_values). If one of the xi values is beyond the value range ofx_values, the function appends thenan_valuedefined inconfig.pyto the results array.interpolate_y(x1, x2, y1, y2, xi)is called by theinterpolate_from_listfunction for paired lower and upperx1-y1andx2-y2floats of thex_valuesandy_valueslists (returns a float number corresponding to the linearly interpolatedyivalue of thexi-yipair betweenx1-y1andx2-y2). Ifxiis not numeric, or if the interpolation results in aZeroDivisionError, the function returns thenan_valuedefined inconfig.py.log_actions(fun)wraps a function (fun), where actions should be written to a logfile. Logging is started with thestart_loggingfunction (see below) and logging is stopped withlogging.shutdown().read_jsonopens a JSON file and returns it as Python object. In this exercise, this function will be used to open the/habitat/trout.jsonfile. The HSI values can then be assessed from the JSON object, for example:
trout = read_json("PATH/" + "trout.json")
print(trout["velocity"]["spawning"][0]["u"])
>>> 0.0198remove_directory(directory)removes adirectory(string argument). Be careful, this function aggressively removes thedirectoryand all its contents with little chance of data recovery.start_logging()starts logging to a logfile (logfile.log) and the Python console at thelogging.DEBUGlevel.
RASTER.PY / RASTER_HSI.PY
The parent Raster class is stored in the raster.py script, where magic methods, a pseudo private _make_raster, and a save method will be created in this exercise.
The HSIRaster class in the raster_hsi.py script is a child of the Raster class. In this exercise, we will only look at how this child class is structured and what it produces (i.e., no modifications are necessary).
CREATE_HSI_RASTERS.PY and CALCULATE_HABITAT_AREA.PY
The two scripts reate_hsi_rasters.py and calculate_habitat_area.py represent the focal point of this exercise and make use of the provided data and Python scripts. Therefore, only the basic framework functions and imports are pre-existing in these two template scripts.
The raster.py script imports the functions and libraries loaded in the fun.py script, and therefore, also the config.py script. For this reason, the numpy and pandas libraries are already available (as np and pd, respectively), and the geo_utils package is already imported as geo (import geo_utils as geo in config.py).
The Raster class will load any GeoTIFF file name as a geo-referenced array object that can be used with mathematical operators. First, we will complement the __init__ method by a Raster.name (extract from the file_name argument), as well as georeferences and array datasets:
# __init__(...) of Raster class in raster.py
self.name = file_name.split("/")[-1].split("\\")[-1].split(".")[0] If the provided file_name does not exist, the __init__ method creates a new raster with the file_name (this behaviour is already implemented in the if not os.path.exists(file_name) statement.
Next, load the osgeo.gdal.dataset, the np.array, and the geo_transformation of the raster. For this purpose, use the raster2array function from the lecture, which is also implemented in geo_utils (geo):
# __init__(...) of Raster class in raster.py
self.dataset, self.array, self.geo_transformation = geo.raster2array(file_name, band_number=band) To identify the EPSG number (Authority code) of a raster, retrieve the spatial reference system (SRS) of the raster. Also for this purpose we have already developed a function in the lecture with the get_srs function. Load the SRS and the EPSG number using the get_srs function with the following two lines of code in the __init__ method:
# __init__(...) of Raster class in raster.py
self.srs = geo.get_srs(self.dataset)
self.epsg = int(self.srs.GetAuthorityCode(None))That is it. The __init__ method of the Raster class is complete.
To enable mathematical operations between multiple instances of the Raster class, implement magic methods (recall the lecture notes) that tell the class what to do when two Raster instances are for example added (+ sign), multiplied (* sign), or subtracted (- sign). For instance, implementing the magic methods __truediv__ (for using the / operator), __mul__ (for using the * operator), and __pow__ (for using the ** operator) will enable the usage of Raster instances like this:
# example for Raster instances, when operators are defined through magic methods
# load GeoTIFF rasters from file directory
velocity = Raster("/usr/geodata/u.tif")
depth = Raster("/usr/geodata/h.tif")
# calculate the Froude number using operators defined with magic methods
Froude = velocity / (depth * 9.81) ** 0.5
# save the new raster
Froude.save("/usr/geodata/froude.tif")The Raster class template already contains one exemplary magic method to enable division (__truediv__):
# Raster class in raster.py
def __truediv__(self, constant_or_raster):
try:
self.array = np.divide(self.array, constant_or_raster.array)
except AttributeError:
self.array /= constant_or_raster
return self._make_raster("div")Let us take a close look at what the __truediv__ method does:
- The input argument
constant_or_rastercan be anotherRasterinstance that has anarrayattribute or a numeric constant (e.g., 9.81). - The method tries to invoke the array attribute of
constant_or_raster.- If
constant_or_rasteris a raster object, then invokingcontant_or_raster.arrayis successful. In this caseself.arrayis overwritten with the element-wise division of the array bycontant_or_raster.array. The element-wise division builds on numpy's built-in function np.divide, which is a computationally efficient wrapper of C/C++ code (much faster than a Python loop over array elements). - If
constant_or_rasteris a numeric value, then invokingcontant_or_raster.arrayresults in anAttributeErrorand the__truediv__method falls in theexcept AttributeErrorstatement, whereself.arrayis simply divided byconstant_or_raster.
- If
- The method returns the result of the pseudo private method
self._make_raster("div")(recall PEP 8 code style conventions on_single_leading_underscoremethods), which corresponds to a newRasterinstance of the actualRasterinstance divided byconstant_or_raster. The newRasterinstance is a temporary GeoTIFF file in the cache folder (recall the cache function). This is how the pseudo-private method_make_raster(self, file_marker)looks like:
def _make_raster(self, file_marker):
f_ending = "__{0}{1}__.tif".format(file_marker, create_random_string(4))
geo.create_raster(cache_folder + self.name + f_ending, self.array, epsg=self.epsg,
nan_val=nan_value,
geo_info=self.geo_transformation)
return Raster(cache_folder + self.name + f_ending)file_markeris a string variable added to the GeoTIFF file name along with a random, four characters-long string (recall thecreate_random_stringfunction).file_markeris unique for every implemented operator. For the__truediv__method usefile_marker="div". Thus, the temporary GeoTIFF file name is defined ascache_folder + self.name + f_ending(e.g."C:\Excercise-geco\__cache__\velocity__divhjev__.tif").- From
geo_utils, thecreate_rasterfunction is used to actually write the temporary GeoTIFF to the__cache__folder using the original raster's spatial reference system. - The method
returns a newRasterinstance of the temporary, cached GeoTIFF file.
Digression: If you think the
_make_rastermethod is confusing ...
Then you have a point. The above-described approach implements the _make_raster method to reuse the temporary GeoTIFFs later with both constants (float) and arrays, but there is a more elegant way to return a new Raster instance. However, returning a new instance of the same class requires that the input argument must be an instance of the class itself (i.e., Raster) and not a numeric variable. The alternative solution for returning a Raster instance starts with a different implementation of the magic method (e.g., __truediv__) and requires to import Python4-style annotations. Therefore, the first line of the script must include (only works with Python 3.7 and higher) the following import:
from __future__ import annotationsThen we can rewrite the __truediv__ method:
def __truediv__(self, other: Raster) -> Raster:
f_ending = "__div%s__.tif" % create_random_string(4)
return Raster(file_name=cache_folder + self.name + f_ending,
raster_array=np.divide(self.array, other.array),
epsg=self.epsg,
geo_info=self.geo_transformation)In this case, the _make_raster method is obsolete. Read more about returning instances of the same class on stack overflow.
Back to the exercise using the _make_raster method. Add the following magic methods to the Raster class (function placeholders are already present in the raster.py template):
__add__(+operator):
try:
self.array += constant_or_raster.array
except AttributeError:
self.array += constant_or_raster
return self._make_raster("add")__mul__(*operator):
try:
self.array = np.multiply(self.array, constant_or_raster.array)
except AttributeError:
self.array *= constant_or_raster
return self._make_raster("mul")__pow__(**operator):
try:
self.array = np.power(self.array, constant_or_raster.array)
except AttributeError:
self.array **= constant_or_raster
return self._make_raster("pow")__sub__(-operator):
try:
self.array -= constant_or_raster.array
except AttributeError:
self.array -= constant_or_raster
return self._make_raster("sub")The last item to complete in the Raster class is the built-in save method that receives a file_name (string) argument defining the directory and save-as name of the Raster instance:
save_status = geo.create_raster(file_name, self.array, epsg=self.epsg, nan_val=0.0, geo_info=self.geo_transformation)
return save_statusWhy do we need the save_status variable? First, it states if saving the raster was successful (save_status=0), and second, this information could be used to delete the raster from the __cache__ folder and flush the memory (feel free to do so for speeding up the code).
The provided create_hsi_rasters.py script already contains required package imports, an if __name__ == '__main__' stand-alone statement as well as the void main, get_hsi_curve, get_hsi_raster, and combine_hsi_rasters functions:
# create_hsi_rasters.py
from fun import *
from raster_hsi import HSIRaster, Raster
from time import perf_counter
def combine_hsi_rasters(raster_list, method="geometric_mean"):
"""...
"""
pass
def get_hsi_curve(json_file, life_stage, parameters):
"""...
"""
pass
def get_hsi_raster(tif_dir, hsi_curve):
"""...
"""
pass
def main():
pass
if __name__ == '__main__':
# define global variables for the main() function
parameters = ["velocity", "depth"]
life_stage = "juvenile"
fish_file = os.path.abspath("") + "\\habitat\\trout.json"
tifs = {"velocity": os.path.abspath("") + "\\basement\\flow_velocity.tif",
"depth": os.path.abspath("") + "\\basement\\water_depth.tif"}
hsi_output_dir = os.path.abspath("") + "\\habitat\\"
# run code and evaluate performance
t0 = perf_counter()
main()
t1 = perf_counter()
print("Time elapsed: " + str(t1 - t0))The if __name__ == '__main__' statement contains a time counter (perf_counter) that prompts how long running the script takes (typically between 3 to 6 seconds). Make sure that
- the
parameterslist contains"velocity"and"depth"(as per thepar_dictin theconfig.pyscript), - the file paths are defined correctly, and
- a life stage is defined (i.e., either
"fry","juvenile","adult", or"spawning"as per the /habitat/fish.xlsx workbook).
The following paragraphs show step by step how to load the HSI curves from the JSON file (get_hsi_curve), apply them to the flow_velocity and water_depth rasters (get_hsi_raster), and combine the resulting HSI rasters into cHSI rasters (combine_hsi_rasters).
The get_hsi_curve function will load the HSI curve from the JSON file (/habitat/trout.json) in a dictionary for the two parameters "velocity" and "depth". Thus, the goal is to create a curve_data dictionary that contains one pandas DataFrame object for all parameters (i.e., velocity and depth). For example, curve_data["velocity"]["u"] will be a pandas Series of velocity entries (in m/s) that corresponds to curve_data["velocity"]["HSI"], which is a pandas Series of HSI values. Similarly, curve_data["depth"]["h"] is a pandas Series of depth entries (in meters) that corresponds to curve_data["depth"]["HSI"], which is a pandas Series of HSI values (corresponds to the curves shown in the HSI graphs above). To extract the desired information from the JSON file, get_hsi_curve takes three arguments (json_file, life_stage, and parameters) in order to:
- Get the information stored in the JSON file with the
read_jsonfunction (see above). - Instantiate a void
curve_datadictionary that will contain the pandasDataFrames for"velocity"and"depth". - Run a loop over the (two) parameters (
"velocity"and"depth"), in which it:- Creates a void
par_pairslist for storing pairs of parameter (par) - * HSI* values as nested lists. - Iterates through the length of provided curve data, where valid data pairs (e.g.,
[u_value, HSI_value]) are appended to thepar_pairslist. This iteration is what actually creates the nested list. - Converts the final
par_pairslist to a pandasDataFramethat it adds to thecurve_datadictionary.
- Creates a void
returnthecurve_datadictionary with its pandasDataFrames.
# create_hsi_rasters.py
def get_hsi_curve(json_file, life_stage, parameters):
# read the JSON file with fun.read_json
file_info = read_json(json_file)
# instantiate output dictionary
curve_data = {}
# iterate through parameter list (e.g., ["velocity", "depth"])
for par in parameters:
# create a void list to store pairs of parameter-HSI values as nested lists
par_pairs = []
# iterate through the length of parameter-HSI curves in the JSON file
for i in range(0, file_info[par][life_stage].__len__()):
# if the parameter is not empty (i.e., __len__ > 0), append the parameter-HSI (e.g., [u_value, HSI_value]) pair as nested list
if str(file_info[par][life_stage][i]["HSI"]).__len__() > 0:
try:
# only append data pairs if both parameter and HSI are numeric (floats)
par_pairs.append([float(file_info[par][life_stage][i][par_dict[par]]),
float(file_info[par][life_stage][i]["HSI"])])
except ValueError:
logging.warning("Invalid HSI curve entry for {0} in parameter {1}.".format(life_stage, par))
# add the nested parameter pair list as pandas DataFrame to the curve_data dictionary
curve_data.update({par: pd.DataFrame(par_pairs, columns=[par_dict[par], "HSI"])})
return curve_dataIn the main function, call get_hsi_curves to get the HSI curves as a dictionary. In addition, implement the cache and the log_actions wrappers (recall the descriptions of provided functions) for the main function:
# create_hsi_rasters.py
...
@log_actions
@cache
def main():
# get HSI curves as pandas DataFrames nested in a dictionary
hsi_curve = get_hsi_curve(fish_file, life_stage=life_stage, parameters=parameters)
...With the provided HSIRaster (raster_hsi.py) class, the HSI rasters can be conveniently created in the get_hsi_raster function. Before using the HSIRaster class, make sure to understand how it works. The HSIRaster class inherits from the Raster class and initiates its parent class in its __init__ method through Raster.__init__(self, file_name=file_name, band=band, raster_array=raster_array, geo_info=geo_info). Then, the class calls its make_hsi method, which takes an HSI curve (nested list) of two equal list pairs (list of parameters and list of HSI values) as argument. The make_hsi method:
- Extracts parameter values (e.g., depth or velocity) from the first element of the nested
hsi_curveslist, and HSI values from the second element of the nestedhsi_curveslist. - Uses numpy's built-in
np.nditerfunction, which iterates through numpy arrays with high computational efficiency (read more aboutnditer).- The
nditerloop passes thepar_valuesasx_valueslist argument and thehsi_valuesasy_valueslist arguments to theinterpolate_from_listfunction (recall the function descriptions above). - The array values (i.e., flow velocity or water depth) correspond to the
xi_valueslist argument of theinterpolate_from_listfunction. - The
interpolate_from_listfunction then identifies for each element of thexi_valueslist the closest elements (xi values) in thex_valueslist and the corresponding positions in they_valueslist. - The
interpolate_from_listfunction passes the identified values to theinterpolate_yfunction, which then linearly interpolates the correspondingyivalue (i.e., an HSI value). - Thus, the flow velocity or water depths in
self.arrayare row-wise (row-by-row) replaced by HSI values.
- The
returns aRasterinstance using the pseudo-private_make_rastermethod (recall its contents).
# raster_hsi.py
from raster import *
class HSIRaster(Raster):
def __init__(self, file_name, hsi_curve, band=1, raster_array=None, geo_info=False):
Raster.__init__(self, file_name=file_name, band=band, raster_array=raster_array, geo_info=geo_info)
self.make_hsi(hsi_curve)
def make_hsi(self, hsi_curve):
par_values = hsi_curve[0]
hsi_values = hsi_curve[1]
try:
with np.nditer(self.array, flags=["external_loop"], op_flags=["readwrite"]) as it:
for x in it:
x[...] = interpolate_from_list(par_values, hsi_values, x)
except AttributeError:
print("WARNING: np.array is one-dimensional.")
return self._make_raster("hsi")Modify the get_hsi_rasters function to directly return a HSIRaster object:
# create_hsi_rasters.py
...
def get_hsi_raster(tif_dir, hsi_curve):
return HSIRaster(tif_dir, hsi_curve)
...The get_hsi_raster function requires two arguments, which it must receive from the main function. For this reason, iterate over the parameters list in the main function and extract the corresponding raster directories from the tifs dictionary (recall the variable definition in the standalone statement). In addition, save the Raster objects returned by the get_hsi_raster function in another dictionary (eco_rasters) to combine them in the next step into a cHSI raster.
# create_hsi_rasters.py
...
@log_actions
@cache
def main():
# get HSI curves as pandas DataFrames nested in a dictionary
hsi_curve = get_hsi_curve(fish_file, life_stage=life_stage, parameters=parameters)
# create HSI rasters for all parameters considered and store the Raster objects in a dictionary
eco_rasters = {}
for par in parameters:
hsi_par_curve = [list(hsi_curve[par][par_dict[par]]),
list(hsi_curve[par]["HSI"])]
eco_rasters.update({par: get_hsi_raster(tif_dir=tifs[par], hsi_curve=hsi_par_curve)})
eco_rasters[par].save(hsi_output_dir + "hsi_%s.tif" % par)
...Of course, one can also loop over the parameters list directly in the get_hsi_raster function.
Tip: This is a good moment to test if the code works. Run
create_hsi_rasters.pyand verify that the two GeoTIFF files (habitat/hsi_velocity.tif and /habitat/hsi_depth.tif) are created correctly. QGIS visualizes the GeoTIFF-products and the activated Identify Features button in QGIS enables to check if the linearly interpolated HSI values agree with the HSI curves in the provided workbook (/habitat/trout.xlsx). Thus, load both GeoTIFF pairs in QGIS: /habitat/hsi_velocity.tif + /basement/flow_velocity.tif and /habitat/hsi_depth.tif + /basement/water_depth.tif.
Next, we come to the reason why we had to define magic methods for the Raster class: combine the HSI rasters using both combination formulae presented above (recall the product and geometric mean formulae), where "geometric_mean" should be used by default. The combine_hsi_rasters function accepts two arguments (a list of Raster objects corresponding to HSI rasters and the method to use as string).
If the method corresponds to the default value "geometric_mean", then the power to be applied to the product of the Raster list is calculated from the nth root, where n corresponds to the number of Raster objects in the raster_list. Otherwise (e.g., method="product"), the power is exactly 1.0.
The combine_hsi_rasters function initially creates an empty cHSI Raster in the cache_folder, with each cell having the value 1.0 (filled through np.ones). In a loop over the Raster elements of the raster_list, the function multiplies each HSI raster with the cHSI raster.
Finally, the function returns the product of all HSI rasters to the power of the previously determined power value.
# create_hsi_rasters.py
def combine_hsi_rasters(raster_list, method="geometric_mean"):
if method is "geometric_mean":
power = 1.0 / float(raster_list.__len__())
else:
# supposedly method is "product"
power = 1.0
chsi_raster = Raster(cache_folder + "chsi_start.tif",
raster_array=np.ones(raster_list[0].array.shape),
epsg=raster_list[0].epsg,
geo_info=raster_list[0].geo_transformation)
for ras in raster_list:
chsi_raster = chsi_raster * ras
return chsi_raster ** powerTo finish the create_hsi_rasters.py script, implement the call to the combine_hsi_rasters function in the main function and save the result as cHSI GeoTIFF raster in the /habitat/ folder:
# create_hsi_rasters.py
...
@log_actions
@cache
def main():
...
for par in parameters:
hsi_par_curve = [list(hsi_curve[par][par_dict[par]]),
list(hsi_curve[par]["HSI"])]
eco_rasters.update({par: get_hsi_raster(tif_dir=tifs[par], hsi_curve=hsi_par_curve)})
eco_rasters[par].save(hsi_output_dir + "hsi_%s.tif" % par)
# get and save chsi raster
chsi_raster = combine_hsi_rasters(raster_list=list(eco_rasters.values()),
method="geometric_mean")
chsi_raster.save(hsi_output_dir + "chsi.tif")
...A successful run of the script create_hsi_rasters.py should look like this (in PyCharm):
Plotted in QGIS, the cHSI GeoTIFF raster should look like this:
The cHSI raster plotted in QGIS, where poor physical habitat quality (cHSI close to 0.0) is colored in red and high physical habitat quality (cHSI close to 1.0) is colored in green.
The presentation of the cHSI raster shows that preferred habitat areas for juvenile trout exist only close to the banks. Also, numerical artifacts of the triangular mesh used by BASEMENT are visible. Therefore, the question arises whether the calculated flow velocities and water depths, and in consequence also the cHSI values, close to the banks can be considered representative.
The cHSI rasters enable the calculation of the available usable habitat area. The previous section featured examples using the fish species trout and its juvenile life stage, for which we will determine here the usable habitat area UHA (in m²) using a cHSI threshold value (rather than the pixel area weighting approach). So we follow the threshold formula described above, using a threshold value of cHSIcrit = 0.4. Thus, every pixel that has a cHSI value of 0.4 or greater counts as usable habitat area.
From a technical point of view, this part of the exercise is about converting a raster into a polygon shapefile as well as accessing and modifying the Attribute Table of the shapefile.
Similar to the creation of the cHSI raster, there is a template script available for this part of the exercise, called calculate_habitat_area.py, which contains package and module imports, an if __name__ == '__main__' stand-alone statement, as well as the void main and calculate_habitat_area functions. The template script looks like this:
# this is calculate_habitat_area.py (template)
from fun import *
from raster import Raster
def calculate_habitat_area(layer, epsg):
pass
def main():
pass
if __name__ == '__main__':
chsi_raster_name = os.path.abspath("") + "\\habitat\\chsi.tif"
chsi_threshold = 0.4
main()In the if __name__ == '__main__' statement, make sure that the global variable chsi_raster_name corresponds to the directory of the cHSI raster created in the previous section. The other global variable (chsi_threshold) corresponds to the cHSIcrit value of 0.4 that we will use with the threshold formula.
In the main function, start with loading the cHSI raster (chsi_raster) as a Raster object. Then, access the numpy array of the cHSI raster and compare it with chsi_threshold using numpy's built-in greater_equal function. np.greater_equal takes an array as first argument and a second argument, which is the condition that can be a numeric variable or another numpy array. Then, np.greater_equal checks if the elements of the first array are greater than or equal to the second argument. In the case of the second argument being an array, this is an element-wise ≥ comparison. The result of np.greater_equal is a boolean array (True where the greater-or-equal condition is fulfilled and False otherwise). However, to create an osgeo.gdal.Dataset object from the result of np.greater_equal, we need a numeric array. For this reason, multiply the result of np.greater_equal by 1.0 and assign it as a new numpy array of zeros (False) and ones (True) to a variable named habitat_pixels (see the code block below).
With the habitat_pixels array and the georeference of chsi_raster, create a new integer GeoTIFF raster with the create_raster function of geo_utils (here: geo.create_raster). In the following code block the new raster is saved in the /habitat/ folder of the exercise as habitat-pixels.tif.
# calculate_habitat_area.py
...
def main():
# open the chsi raster
chsi_raster = Raster(chsi_ras_name)
# extract pixels where the physical habitat quality is higher than the user threshold value
habitat_pixels = np.greater_equal(chsi_raster.array, chsi_threshold_value) * 1
# write the habitat pixels to a binary array (0 -> no habitat, 1 -> usable habitat)
geo.create_raster(os.path.abspath("") + "\\habitat\\habitat-pixels.tif",
raster_array=habitat_pixels,
epsg=chsi_raster.epsg,
geo_info=chsi_raster.geo_transformation)
...In the next step, convert the habitat pixel raster into a polygon shapefile and save it in the /habitat/ folder as habitat-area.shp. The conversion of a raster into a polygon shapefile requires that the raster contains only integer values, which is the case in the habitat pixel raster (only zeros and ones - recall the lecture notes). With the raster2polygon function of geo_utils, create the new polygon shapefile, specify habitat-pixels.tif as raster_file_name to be converted, and /habitat/habitat-area.shp as output file name.
geo.raster2polygon returns an osgeo.ogr.DataSource object and we can pass its layer including the information of the EPSG authority code (from chsi_raster) directly to the not-yet-written calculate_habitat_area function:
# calculate_habitat_area.py
...
def main():
... (create habitat pixels raster)
# convert the raster with usable pixels to polygon (must be an integer raster!)
tar_shp_file_name = os.path.abspath("") + "\\habitat\\habitat-area.shp"
habitat_polygons = geo.raster2polygon(os.path.abspath("") + "\\habitat\\habitat-pixels.tif",
tar_shp_file_name)
# calculate the habitat area (will be written to the attribute table)
calculate_habitat_area(habitat_polygons.GetLayer(), chsi_raster.epsg)
...In order for the calculate_habitat_area function to produce what its name promises, we need to populate this function as well. For this purpose, use the epsg integer argument to identify the unit system of the shapefile.
# calculate_habitat_area.py
...
def calculate_habitat_area(layer, epsg):
# retrieve units
srs = geo.osr.SpatialReference()
srs.ImportFromEPSG(epsg)
area_unit = "square %s" % str(srs.GetLinearUnitsName())
...Note: In practice, many mistakes are made due to the incorrect use of area units, which is often not obvious at first because of the size of geospatial data (several gigabytes). There are many units of length and area (meters, feet, acre, hectare, km²) and a difference of an order of magnitude is sometimes only noticed when a critical reviewer or a local expert realizes an incoherence in the results. In the application shown here, we use the information of the length units only to output the total area with a correct reference to the area units (m²) on the console, but in practice, this information can save a career.
To determine the habitat area, the area of each polygon must be calculated. For this purpose, add a new field to the layer in the Attribute Table, name it "area", and assign a geo.ogr.OFTReal (numeric) data type (recall how to create a field an data types explained in the lecture notes).
Then, create a void list called poly_size, in which we will write the area of all polygons that have a field value of 1. To access the individual polygons (features) of the layer, iterate through all features using a for loop, which:
- Extracts the polygon of every
featureusingpolygon = feature.GetGeometryRef() - Appends the polygon's area size to the
poly_sizelist if the field"value"of thepolygon(at position 0:feature.GetField(0)) is 1 (True). - Writes the polygon's area size to the Attribute Table with
feature.SetField("area", polygon.GetArea()). - Saves the changes (calculated area) to the shapefile
layerwithlayer.SetFeature(feature).
Important: Looping through an attribute table is computationally expensive in Python. If a shapefile has many elements (points, lines, polygons), this loop can last for hours, days, or even weeks. Therefore, it can be useful to convert a shapefile into a raster and perform calculations using numpy's computationally efficient built-in functions (C/C++ wrappers), which are many times faster. A particular problem is the processing of large lidar datasets (several million points), where it may be necessary to use other software (read more at earthdatascience.org).
The last information needed after the for loop is the total area of the "value"=1 polygons, which we get by writing the sum of the poly_size list to the console. Therefore, the second and last part of the calculate_habitat_area function looks like this:
# calculate_habitat_area.py
...
def calculate_habitat_area(layer, epsg):
... (extract unit system information)
# add area field
layer.CreateField(geo.ogr.FieldDefn("area", geo.ogr.OFTReal))
# create list to store polygon sizes
poly_size = []
# iterate through geometries (polygon features) of the layer
for feature in layer:
# retrieve polygon geometry
polygon = feature.GetGeometryRef()
# add polygon size if field "value" is one (determined by chsi_treshold)
if int(feature.GetField(0)):
poly_size.append(polygon.GetArea())
# write area to area field
feature.SetField("area", polygon.GetArea())
# add the feature modifications to the layer
layer.SetFeature(feature)
# calculate and print habitat area
print("The total habitat area is {0} {1}.".format(str(sum(poly_size)), area_unit))
...Note: To calculate other geometry attributes than the polygon area (e.g., envelope extents, derive a convex hull, or get the length of lines), refer to the functions described in the lecture notes and use those functions in lieu of
polygon.GetArea().
A successful run of the script calculate_habitat_area.py should look like this (in PyCharm):

Plotted in QGIS, the habitat-area shapefile looks like this (use Categorized symbology):
The habitat-area shapefile plotted in QGIS with Categorized symbology, where the usable habitat area UHA (cHSI > 0.4) is delineated by the hatched purple patches and their dashed outlines.
The UHA of the analyzed river section represents a very small share of the total wetted area, which can be interpreted as an ecologically poor status of the river. However, a glance at a map and the simulation files of the Flaz example of BASEMENT suggests that at a discharge of 50 m³/s, a flood situation can be assumed. As during floods, there are generally higher flow velocities, which are out-of-favor of juvenile fish, the small usable habitat area is finally not surprising.
Important: Remember that the here presented habitat assessment assumes that fish prefer regions with high cHSI values and that rivers with a high proportion of areas with high cHSI values are ecologically particularly valuable. This approach represents an assessment of the physical habitat state with limited information on the functional habitat state.
BONUS HOMEWORK: Rewrite the magic methods of the Raster
class by using def __METHOD__(self, other: Raster) -> Raster: instead of
def __METHOD__(self, constant_or_raster): and the _make_raster method.

