Tensorflow implementation on cifar100.
All models have achieved high accuracy (> 0.7).
Requirements:
- tensorflow-gpu=1.11.1
- tensorlayer=1.11.0
download dataset:
download repo:
$ git clone https://github.com/Ecohnoch/tensorflow-cifar100
train:
$ python3 -u train.py train --batch_size 64 --epoch 200 --network resnet50 --opt momentum --train_path /data/ChuyuanXiong/up/cifar-100-python/train --test_path /data/ChuyuanXiong/up/cifar-100-python/test
params:
- batch_size: 64 default
- epoch: 200 is best
- network: resnet18/resnet50/resnet110/resnet152/seresnet50/seresnet110/seresnet152/densenet121/densenet169/densenet161/densenet201/resnext50/resnext110/resnext152/seresnext50/seresnext110/seresnext152/densenet100bc/densenet190bc
- opt: adam/momentum/nesterov
- train_path: your train path
- test_path: your test path
Have Done
ResNet18
ResNet34
ResNet50
ResNet110
ResNet152
ResNeXt50
ResNeXt110
ResNeXt152
SENet50
SENet110
SENet152
SE-ResNext50
SE-ResNext110
SE-ResNext152
DenseNet121
DenseNet169
DenseNet201
DenseNet100BC
DenseNet190BC
# TODO
preresnet
mobilenet
test:
python3 -u train.py test --network resnet18 --test_path '/data/ChuyuanXiong/up/cifar-100-python/test' --ckpt 'params/resnet18/Speaker_vox_iter_58000.ckpt'
params:
- network: resnet18/resnet50
- test_path: your test path
- ckpt: your pre-trained model. You can try the [$THIS_REPO/params/resnet18/Speaker_vox_iter_58000.ckpt]
Also, If you have the pre-trained model, you can try the interface to quickly access to the test results. Just try this:
$ cd [to the root directory of this repo]
$ python
>>> from pretrained.cifar100 import cifar100
>>> model = cifar100(model='resnet18')
>>> model.test()
Or you can cd to the dir and then edit and run example.py.
dataset | network | top1 acc | epoch (lr=0.1) | epoch (lr=0.02) | batch_size | initializer | warmup | weight decay |
---|---|---|---|---|---|---|---|---|
cifar100 | resnet18 | 0.740 | 60 | > 60 | 128 | msra | 0 | 0 |
cifar100 | densenet169 | 0.743 | 60 | > 60 | 64 | orth | 1 | 5e-4 |
cifar100 | densenet100bc | 0.728 | 60 | > 60 | 32 | orth | 1 | 5e-4 |
cifar100 | densenet201 | 0.753 | 60 | > 60 | 64 | orth | 1 | 5e-4 |
cifar100 | seresnet110 | 0.725 | 60 | > 60 | 64 | orth | 1 | 5e-4 |
// TODO
- preresnet18
- ...
Continuous update!
- ResNet18,Accuracy=0.740
- DenseNet169,Accuracy=0.743,Password=7qj2
- DenseNet100-BC,Accuracy=0.728,Password=fwi4
- Se-ResNet110,Accuracy=0.725,Password=we64
Ecohnoch (Chuyuan Xiong)
If this project is very helpful for you, please star it!