-
Notifications
You must be signed in to change notification settings - Fork 96
Open
Description
Hi, I notice that you use a refiner network to remove the inner mesh introduing by sparse to dense conversion.
I think a better way to sovle it is using the mask attribute in scikit-image with a little modification in both repos.
Here I show a result of my current version with remove_interior=False.
In your repo (ss_vae.py line 122):
mask[sparse_index_i[..., 0], sparse_index_i[..., 1], sparse_index_i[..., 2]] = True
vertices, faces, _, _ = measure.marching_cubes(
sdf.numpy(),
mc_threshold,
method="lewiner",
mask = mask.numpy()
)
In scikit-image repo (skimage/measure/_marching_cubes_lewiner_cy.pyx line 983)
if no_mask or (mask[z_st, y_st, x_st] and mask[z, y_st, x_st] and mask[z_st, y, x_st] and mask[z_st, y_st, x] and mask[z, y, x_st] and mask[z, y_st, x] and mask[z_st, y, x] and mask[z, y, x]):
chenxiao111222 and xubaixinxbx
Metadata
Metadata
Assignees
Labels
No labels