Skip to content

DoDuy/Deep-Learning-Specialization

Repository files navigation

Deep Learning Specialization on Coursera

This is the repository for my implementations on the Deep Learning Specialization from Coursera.

Taught by Andrew Ng

Done and pass 100% all Quiz and Programming Assignments

Foundations of Deep Learning:

  • Understand the major technology trends driving Deep Learning
  • Be able to build, train and apply fully connected deep neural networks
  • Know how to implement efficient (vectorized) neural networks
  • Understand the key parameters in a neural network's architecture

Quizzes:

Assignments:

  • Understand industry best-practices for building deep learning applications.
  • Be able to effectively use the common neural network "tricks", including initialization, L2 and dropout regularization, Batch normalization, gradient checking,
  • Be able to implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence.
  • Understand new best-practices for the deep learning era of how to set up train/dev/test sets and analyze bias/variance
  • Be able to implement a neural network in TensorFlow.

Quizzes:

Assignments:

  • Understand how to diagnose errors in a machine learning system, and
  • Be able to prioritize the most promising directions for reducing error
  • Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance
  • Know how to apply end-to-end learning, transfer learning, and multi-task learning

Quizzes:

  • Understand how to build a convolutional neural network, including recent variations such as residual networks.
  • Know how to apply convolutional networks to visual detection and recognition tasks.
  • Know to use neural style transfer to generate art.
  • Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data.

Quizzes:

Assignments:

  • Understand how to build and train Recurrent Neural Networks (RNNs), and commonly-used variants such as GRUs and LSTMs.
  • Be able to apply sequence models to natural language problems, including text synthesis.
  • Be able to apply sequence models to audio applications, including speech recognition and music synthesis.

Quizzes:

Assignments: