Skip to content

FluidFrames.RIFE | video AI frame-generation app

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE
Unknown
LICENSE.txt
Notifications You must be signed in to change notification settings

Djdefrag/FluidFrames.RIFE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation




FluidFrames.RIFE | video AI frame generation app


What is FluidFrames.RIFE?

FluidFrames.RIFE is a Windows app powered by RIFE AI to create frame-generated and slowmotion videos.

Other AI projects.🤓

Credits.

How is made. 🛠

FluidFrames.RIFE is completely written in Python, from backend to frontend. External packages are:

  • AI -> torch / onnxruntime-directml
  • GUI -> customtkinter
  • Image/video -> OpenCV / moviepy
  • Packaging -> Nuitka

Requirements. 🤓

  • Windows 11 / Windows 10
  • RAM >= 8Gb
  • Any Directx12 compatible GPU with >= 2GB VRAM

Features.

  • Elegant and easy to use GUI
  • Resize video before interpolation
  • Multiple GPUs support
  • Compatible video - mp4, wemb, gif, mkv, flv, avi, mov, qt
  • Video frame-generation STOP&RESUME
  • PRIVACY FOCUSED - no internet connection required / everything is on your PC
  • Video frames generation x2 / x4 / x8
    • 30fps => x2 => 60fps
    • 30fps => x4 => 120fps
    • 30fps => x8 => 240fps
  • Video slowmotion x2 /x4
    • 30fps => x2_slowmotion => 30fps - 2 times slower
    • 30fps => x4_slowmotion => 30fps - 4 times slower
    • 30fps => x8_slowmotion => 30fps - 8 times slower

Next steps. 🤫

  • 1.X versions
    • Switch to Pytorch-directml to support all Directx12 compatible gpu (AMD, Intel, Nvidia)
    • New GUI with Windows 11 style
    • Include audio for processed video
    • Optimizing video frame resize and extraction speed
    • Multi GPU support (for pc with double GPU, integrated + dedicated)
    • Python 3.10 (expecting ~10% more performance)
    • Slowmotion function
  • 2.X versions
    • New, completely redesigned graphical interface based on @customtkinter
    • Fluidify multiple videos at once
    • Save AI generated frames as files
    • Support RIFE AI model updates
    • Support for RIFE_Lite AI model (a faster and lighter version of RIFE)
  • 3.x versions (now under development)
    • New AI engine powered by onnxruntime-directml (https://github.com/microsoft/onnxruntime)
    • Python 3.11 (~10% performance improvements)
    • Display frame-generated videos info in the GUI
    • FFMPEG 7 (latest release)
    • Saving user settings (AI model, GPU, CPU etc.)
    • Video frame-generation STOP&RESUME
    • Python 3.12

Some Examples.

Videos

  1. Original / x4 / x2-slomotion

giphy

giphy_RIFEx4_100.mp4
giphy_RIFEx2_slowmo_100.mp4
  1. Original / x4 / x4-slomotion
deadpool.mp4
deadpool_RIFEx4_100.mp4
deadpool_RIFEx4_slowmo_100.mp4
  1. Original / x2
original.mp4
gg.ss.RIFEHDv3.mp4
  1. Original / x2

209639439-94c8774d-354e-4d56-9123-e1aa4af95e08

209639439-94c8774d-354e-4d56-9123-e1aa4af95e08_RIFE_HDv3.mp4
  1. Original / x2 / x2-slomotion
gohan.mp4
gohan_RIFE_HDv3x2.mp4
gohan_RIFE_HDv3x2-slowmotion.mp4