LifeSync is a multi-system repository that brings together a Backend, Frontend, LLM service, and Model artifacts to provide an integrated personal assistant / life-management platform. This README explains the repository layout, features, and how to get each subsystem running locally.
Repository: DevSharma03/LifeSync
- About
- Project Features
- Repository Structure
- Quick Start (all 4 systems)
- Environment variables (examples)
- Development notes & workflow
- Contributing
- License
- Contact
LifeSync is designed to integrate a backend API, a user-facing frontend, and an LLM-based service layer that uses model artifacts stored in the Models/ folder. The goal is to provide an extendable foundation for building an intelligent personal assistant and life-management toolset.
- Centralized Backend API for user data, authentication, synchronization, scheduling, and integrations.
- Modern Frontend for user interactions (dashboard, calendar, reminders, chat with LLM).
- LLM service to handle natural language understanding, suggestions, and conversational workflows.
- Models directory to store model artifacts (local or mounted) for offline inference or fine-tuning.
- Extensible architecture — independent services that can be deployed separately (or in containers).
- Developer-friendly: clear separation of concerns and environment-based configuration.
Top-level folders present in this repository:
- Backend/ — API server (Node.js / Express or similar)
- Frontend/ — Client application (React / Next.js or similar)
- LLM/ — LLM service (Python, FastAPI/Flask or Node-based wrapper)
- Models/ — Model files, checkpoints and related artifacts
Suggested in-repo tree (typical example):
LifeSync/
├─ Backend/
│ ├─ package.json
│ ├─ src/
│ │ ├─ index.js
│ │ ├─ routes/
│ │ └─ controllers/
│ └─ .env.example
├─ Frontend/
│ ├─ package.json
│ ├─ src/
│ │ ├─ App.jsx
│ │ ├─ pages/
│ │ └─ components/
│ └─ .env.example
├─ LLM/
│ ├─ requirements.txt
│ ├─ app.py # or main.py / server.py
│ ├─ handlers/
│ └─ .env.example
├─ Models/
│ └─ README.md # instructions for downloading/placing model files
└─ README.md
This section gives step-by-step instructions to get each subsystem running locally. Adjust commands to match your project's scripts if they differ.
- Node.js v16+ (or as required by project)
- npm or yarn
- Python 3.8+ (for LLM service)
- pip
- Git
- (Optional) Docker & Docker Compose if you prefer containerized setup
- A running database (MongoDB, Postgres, etc.) if the backend requires persistence
-
Open a terminal:
cd Backend -
Copy environment template:
cp .env.example .env # Edit .env to set DATABASE_URL, JWT_SECRET, PORT, etc. -
Install dependencies:
npm install
-
Start the dev server:
npm run dev # or npm start -
API should be available at
http://localhost:PORT(check your .envPORT).
Notes:
- If the backend uses a database, ensure
DATABASE_URLpoints to your running DB and migrations are applied. - Typical env values:
DATABASE_URL,JWT_SECRET,PORT,REDIS_URL.
-
Open a new terminal:
cd Frontend -
Copy environment template:
cp .env.example .env # Edit .env to set REACT_APP_API_URL or equivalent -
Install dependencies:
npm install
-
Start the frontend:
npm start # or for Next.js: npm run dev -
Open
http://localhost:3000(or the port shown by the dev server).
Environment:
- Set API base URL env variable (e.g.,
REACT_APP_API_URL=http://localhost:4000).
The LLM folder contains the service that interacts with local or remote models. Commonly built in Python (FastAPI / Flask), but adjust commands to match your implementation.
-
Create & activate a Python virtual environment:
cd LLM python -m venv .venv source .venv/bin/activate # macOS / Linux .venv\Scripts\activate # Windows
-
Install requirements:
pip install -r requirements.txt
-
Configure environment:
cp .env.example .env # Edit .env to set MODEL_DIR, MODEL_NAME, API_PORT, OPENAI_API_KEY (if using remote), etc. -
Run the service:
- If FastAPI / Uvicorn:
uvicorn app:app --reload --host 0.0.0.0 --port 8000
- If Flask/simple script:
python app.py
- If FastAPI / Uvicorn:
-
The LLM service will typically expose an endpoint like
http://localhost:8000/api/llmwhich the Backend or Frontend can call.
Notes:
- If using large local models, ensure
Models/contains the required files and that the LLM service has sufficient GPU/CPU resources configured.
The Models/ directory holds model checkpoints, tokenizers, or binary files used by the LLM service.
- Place models in
Models/<model-name>/and setMODEL_DIRorMODEL_PATHinLLM/.env. - For example:
Models/ └─ llama-2-7b/ ├─ config.json ├─ pytorch_model.bin └─ tokenizer.json - If models are large, store them outside of Git (use .gitignore) and include instructions in
Models/README.mdto download from the appropriate source.
Example variables you may find across subsystems:
Backend (.env)
PORT=4000
DATABASE_URL=mongodb://localhost:27017/lifesync
JWT_SECRET=your_jwt_secret
LLM_SERVICE_URL=http://localhost:8000
Frontend (.env)
REACT_APP_API_URL=http://localhost:4000
LLM (.env)
MODEL_DIR=../Models/llama-2-7b
API_PORT=8000
OPENAI_API_KEY= # if you use remote APIs
- Each subsystem runs independently; use the Backend to centralize business logic and the LLM for NLP tasks.
- Frontend communicates with Backend via REST or GraphQL. Backend may forward LLM-specific requests to the LLM service.
- Use environment-based configuration and .env templates to make local setup reproducible.
- Add a
docker-compose.ymlif you want a one-command local startup for all services and dependencies (db, redis, etc.).
Suggested branch/workflow:
- main — stable production-ready code
- feature/* — feature branches
- fix/* — bug fixes
- PRs should include tests and a description of changes.
Thanks for considering contributing! A suggested contribution flow:
- Fork the repository.
- Create a feature branch:
git checkout -b feature/my-feature. - Make changes & add tests where appropriate.
- Open a Pull Request describing your changes and the rationale.
Add a CONTRIBUTING.md to outline style, linting, testing, and commit message guidelines.
No license is specified in the repository currently. If you'd like to open-source it, consider adding a license (MIT, Apache-2.0, etc.). Add a LICENSE file at the repo root.
Repository: DevSharma03/LifeSync
For questions or help setting up, open an issue in the repo or contact the maintainer (DevSharma03) via GitHub.
Thank you — this README is a template tailored to the current repo layout (Backend, Frontend, LLM, Models). If you want, I can:
- Commit this README.md to the repository,
- Generate
.env.exampletemplates for each subsystem, - Create a Docker Compose example to run all 4 systems together.
Tell me which action you’d like me to do next and I’ll proceed.