Skip to content

Commit

Permalink
first commit
Browse files Browse the repository at this point in the history
  • Loading branch information
yangxue committed Apr 25, 2019
0 parents commit 5d5ecce
Show file tree
Hide file tree
Showing 170 changed files with 63,981 additions and 0 deletions.
118 changes: 118 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,118 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

# C extensions
*.so

# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
*.egg-info/
.installed.cfg
*.egg

# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec

# Installer logs
pip-log.txt
pip-delete-this-directory.txt

# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
.hypothesis/

# Translations
*.mo
*.pot

# Django stuff:
*.log
local_settings.py

# Flask stuff:
instance/
.webassets-cache

# Scrapy stuff:
.scrapy

# Sphinx documentation
docs/_build/

# PyBuilder
target/

# Jupyter Notebook
.ipynb_checkpoints

# pyenv
.python-version

# celery beat schedule file
celerybeat-schedule

# SageMath parsed files
*.sage.py

# dotenv
.env

# virtualenv
.venv
venv/
ENV/

# Spyder project settings
.spyderproject
.spyproject

# Rope project settings
.ropeproject

# mkdocs documentation
/site

# mypy
.mypy_cache/

.pyc
.so
*.data-00000-of-00001
*.index
*.meta
events.*
checkpoint
.idea/
__pycache__/
*.json
*.zip

*/tools/demos/*
*/output/*
*/data/pretrained_weights/*
*/data/tfrecord/*
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2018 DetectionTeamUCAS

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
83 changes: 83 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Cascade R-CNN: Delving into High Quality Object Detection

## Abstract
This repo is based on [FPN](https://github.com/DetectionTeamUCAS/FPN_Tensorflow), and completed by [YangXue](https://github.com/yangxue0827).

## Train on COCO train2017 and test on COCO val2017 (coco minival).
|Model|Backbone|Train Schedule|GPU|Image/GPU|FP16|Box AP(Mask AP)|test stage|
|-----|--------|--------------|---|---------|----|---------------|---|
|Faster (paper)|R50v1-FPN|1X|8X TITAN XP|1|no|38.3|3|
|Faster (ours)|R50v1-FPN|1X|8X 2080 Ti|1|no|38.2|3|
|Faster (Face++)|R50v1-FPN|1X|8X 2080 Ti|2|no|39.1|3|

![2](comparison.png)

## My Development Environment
1、python3.5 (anaconda recommend)
2、cuda9.0 **(If you want to use cuda8, please set CUDA9 = False in the cfgs.py file.)**
3、[opencv(cv2)](https://pypi.org/project/opencv-python/)
4、[tfplot](https://github.com/wookayin/tensorflow-plot)
5、tensorflow == 1.12

## Download Model
### Pretrain weights
1、Please download [resnet50_v1](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz), [resnet101_v1](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz) pre-trained models on Imagenet, put it to data/pretrained_weights.
2、Or you can choose to use a better backbone, refer to [gluon2TF](https://github.com/yangJirui/gluon2TF). [Pretrain Model Link](https://pan.baidu.com/s/1HF3G5XSxXm7W4pk10RuOlw), password: q4jg.

### Trained weights
**Select a configuration file in the folder ($PATH_ROOT/libs/configs/) and copy its contents into cfgs.py, then download the corresponding [weights](https://github.com/DetectionTeamUCAS/Models/tree/master/Cascade_FPN_Tensorflow).**

## Compile
```
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace
```

## Train

1、If you want to train your own data, please note:
```
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord_multi_gpu.py
```

2、make tfrecord
```
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord_coco.py --VOC_dir='/PATH/TO/JSON/FILE/'
--save_name='train'
--dataset='coco'
```

3、multi-gpu train
```
cd $PATH_ROOT/tools
python multi_gpu_train.py
```

## Eval
```
cd $PATH_ROOT/tools
python eval_coco.py --eval_data='/PATH/TO/IMAGES/'
--eval_gt='/PATH/TO/TEST/ANNOTATION/'
--GPU='0'
```

## Tensorboard
```
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
```
![3](images.png)

![4](scalars.png)

## Reference
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/CharlesShang/FastMaskRCNN
5、https://github.com/matterport/Mask_RCNN
6、https://github.com/msracver/Deformable-ConvNets
7、https://github.com/tensorpack/tensorpack
Binary file added comparison.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file added data/__init__.py
Empty file.
131 changes: 131 additions & 0 deletions data/io/BDD100K/BDD2VOC.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import json
import os
import cv2
from xml.dom.minidom import Document
import xml.dom.minidom

label_map = {'bus': 1, 'traffic light': 2, 'traffic sign': 3, 'person': 4, 'bike': 5,
'truck': 6, 'motor': 7, 'car': 8, 'train': 9, 'rider': 10}
FLAG = ['train', 'val']


def write_xml(save_path, name, box_list, label_list, w, h, d):

# dict_box[filename]=json_dict[filename]
doc = xml.dom.minidom.Document()
root = doc.createElement('annotation')
doc.appendChild(root)

foldername = doc.createElement("folder")
foldername.appendChild(doc.createTextNode("JPEGImages"))
root.appendChild(foldername)

nodeFilename = doc.createElement('filename')
nodeFilename.appendChild(doc.createTextNode(name))
root.appendChild(nodeFilename)

pathname = doc.createElement("path")
pathname.appendChild(doc.createTextNode("xxxx"))
root.appendChild(pathname)

sourcename=doc.createElement("source")

databasename = doc.createElement("database")
databasename.appendChild(doc.createTextNode("Unknown"))
sourcename.appendChild(databasename)

annotationname = doc.createElement("annotation")
annotationname.appendChild(doc.createTextNode("xxx"))
sourcename.appendChild(annotationname)

imagename = doc.createElement("image")
imagename.appendChild(doc.createTextNode("xxx"))
sourcename.appendChild(imagename)

flickridname = doc.createElement("flickrid")
flickridname.appendChild(doc.createTextNode("0"))
sourcename.appendChild(flickridname)

root.appendChild(sourcename)

nodesize = doc.createElement('size')
nodewidth = doc.createElement('width')
nodewidth.appendChild(doc.createTextNode(str(w)))
nodesize.appendChild(nodewidth)
nodeheight = doc.createElement('height')
nodeheight.appendChild(doc.createTextNode(str(h)))
nodesize.appendChild(nodeheight)
nodedepth = doc.createElement('depth')
nodedepth.appendChild(doc.createTextNode(str(d)))
nodesize.appendChild(nodedepth)
root.appendChild(nodesize)

segname = doc.createElement("segmented")
segname.appendChild(doc.createTextNode("0"))
root.appendChild(segname)

for (box, label) in zip(box_list, label_list):

nodeobject = doc.createElement('object')
nodename = doc.createElement('name')
nodename.appendChild(doc.createTextNode(str(label)))
nodeobject.appendChild(nodename)
nodebndbox = doc.createElement('bndbox')
nodex1 = doc.createElement('x1')
nodex1.appendChild(doc.createTextNode(str(box[0])))
nodebndbox.appendChild(nodex1)
nodey1 = doc.createElement('y1')
nodey1.appendChild(doc.createTextNode(str(box[1])))
nodebndbox.appendChild(nodey1)
nodex2 = doc.createElement('x2')
nodex2.appendChild(doc.createTextNode(str(box[2])))
nodebndbox.appendChild(nodex2)
nodey2 = doc.createElement('y2')
nodey2.appendChild(doc.createTextNode(str(box[3])))
nodebndbox.appendChild(nodey2)

nodeobject.appendChild(nodebndbox)
root.appendChild(nodeobject)
fp = open(save_path, 'w')
doc.writexml(fp, indent='\n')
fp.close()


for flag in FLAG:
BDD_path = '/unsullied/sharefs/_research_detection/GeneralDetection/BDD100K/bdd100k/'
BDD_labels_dir = os.path.join(BDD_path, 'labels/bdd100k_labels_images_{}.json'.format(flag))
BDD_labels = json.load(open(BDD_labels_dir, 'r'))
BDD_images_dir = os.path.join(BDD_path, 'images/100k/{}'.format(flag))

for cnt, bdd in enumerate(BDD_labels):
img_name = bdd['name']
img_path = os.path.join(BDD_images_dir, img_name)
# img = cv2.imread(img_path)
# h, w, d = img.shape
h, w, d = 720, 1280, 3
bdd_boxes = bdd['labels']
box_list, label_list = [], []
for bb in bdd_boxes:
if bb['category'] not in label_map.keys():
continue
box = bb['box2d']
box_list.append([round(box['x1']), round(box['y1']),
round(box['x2']), round(box['y2'])])
label_list.append(bb['category'])

if len(box_list) != 0:
save_path = os.path.join('/unsullied/sharefs/yangxue/isilon/yangxue/data/BDD100K/BDD100K_VOC/bdd100k_{}/Annotations'.format(flag),
img_name.replace('.jpg', '.xml'))
write_xml(save_path, img_name, box_list, label_list, w, h, d)
if cnt % 100 == 0:
print('{} process: {}/{}'.format(flag, cnt+1, len(BDD_labels)))
print('Finish!')









Loading

0 comments on commit 5d5ecce

Please sign in to comment.