Pytorch Implementation of "Feature Pyramid Networks for Object Detection"
You can star this repository to keep track of the project if it's helpful for you, thank you for your support.
OS: Ubuntu 16.04
Python: python3.x with torch==1.2.0, torchvision==0.4.0
Backbone | Train | Test | Pretrained Model | Epochs | Learning Rate | RoI per image | AP |
---|---|---|---|---|---|---|---|
Res50-FPN | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | 35.5 |
Res101-FPN | trainval35k | minival5k | Pytorch | 12 | 2e-2/2e-3/2e-4 | 512 | 37.4 |
You could get the trained models reported above at
https://drive.google.com/open?id=1xm8z-EMbNG17sQzd-2FRRLVk_N7UIOhE
cd libs
sh make.sh
usage: train.py [-h] --datasetname DATASETNAME --backbonename BACKBONENAME
[--checkpointspath CHECKPOINTSPATH]
optional arguments:
-h, --help show this help message and exit
--datasetname DATASETNAME
dataset for training.
--backbonename BACKBONENAME
backbone network for training.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
cmd example:
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python train.py --datasetname coco --backbonename resnet50
usage: test.py [-h] --datasetname DATASETNAME [--annfilepath ANNFILEPATH]
[--datasettype DATASETTYPE] --backbonename BACKBONENAME
--checkpointspath CHECKPOINTSPATH [--nmsthresh NMSTHRESH]
optional arguments:
-h, --help show this help message and exit
--datasetname DATASETNAME
dataset for testing.
--annfilepath ANNFILEPATH
used to specify annfilepath.
--datasettype DATASETTYPE
used to specify datasettype.
--backbonename BACKBONENAME
backbone network for testing.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
--nmsthresh NMSTHRESH
thresh used in nms.
cmd example:
CUDA_VISIBLE_DEVICES=0 python test.py --checkpointspath fpn_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50
usage: demo.py [-h] --imagepath IMAGEPATH --backbonename BACKBONENAME
--datasetname DATASETNAME --checkpointspath CHECKPOINTSPATH
[--nmsthresh NMSTHRESH] [--confthresh CONFTHRESH]
optional arguments:
-h, --help show this help message and exit
--imagepath IMAGEPATH
image you want to detect.
--backbonename BACKBONENAME
backbone network for demo.
--datasetname DATASETNAME
dataset used to train.
--checkpointspath CHECKPOINTSPATH
checkpoints you want to use.
--nmsthresh NMSTHRESH
thresh used in nms.
--confthresh CONFTHRESH
thresh used in showing bounding box.
cmd example:
CUDA_VISIBLE_DEVICES=0 python demo.py --checkpointspath fpn_res50_trainbackup_coco/epoch_12.pth --datasetname coco --backbonename resnet50 --imagepath 000001.jpg
[1]. https://github.com/jwyang/fpn.pytorch
[2]. https://github.com/open-mmlab/mmdetection