Next-generation open-source AI agent development framework and runtime platform
下一代开源 AI 智能体开发框架与运行时平台
Event-driven Runtime · Simple Framework · Minimal UI · Ready-to-use Portal
事件驱动 · 简易开发 · 界面简约 · 开箱即用
Run your AI Agent gateway in one command:
docker run -d \
--name portagent \
-p 5200:5200 \
-e LLM_PROVIDER_KEY=sk-ant-xxxxx \
-e LLM_PROVIDER_URL=https://api.anthropic.com \
-v ./data:/home/agentx/.agentx \
deepracticexs/portagent:latestOpen http://localhost:5200 and start chatting!
- Multi-User Support - User registration (invite code optional)
- Session Persistence - Resume conversations anytime
- Real-time Streaming - WebSocket-based communication
- Docker Ready - Production-ready with health checks
Tip: Add
-e INVITE_CODE_REQUIRED=trueto enable invite code protection.
👉 Full Portagent Documentation - Configuration, deployment, API reference
AgentX is a TypeScript framework for building AI Agent applications with event-driven architecture.
Server-side (Node.js)
import { createAgentX } from "agentxjs";
// Create AgentX instance with WebSocket server
const agentx = await createAgentX({
llm: {
apiKey: process.env.ANTHROPIC_API_KEY,
baseUrl: process.env.ANTHROPIC_BASE_URL,
},
storage: { driver: "fs", path: "./data" },
});
// Create container for agents
await agentx.request("container_create_request", {
containerId: "default",
});
// Start WebSocket server
await agentx.listen(5200);
console.log("✓ Server running on ws://localhost:5200");Client-side (Browser/React)
import { useAgentX } from "@agentxjs/ui";
function ChatApp() {
const agentx = useAgentX("ws://localhost:5200");
if (!agentx) return <div>Connecting...</div>;
return <Studio agentx={agentx} />;
}UI Components
npm install @agentxjs/uiProduction-ready React components with Tailwind CSS:
<Studio>- Complete chat workspace (AgentList + Chat)<Chat>- Chat interface with message history<AgentList>- Agent/session list with searchuseAgentX()- React hook for server connection
👉 Full AgentX Documentation - Architecture, API reference, guides, and examples
Event-driven architecture with layered design:
SERVER SIDE SYSTEMBUS CLIENT SIDE
═══════════════════════════════════════════════════════════════════════════
║
┌─────────────────┐ ║
│ Environment │ ║
│ • LLMProvider │ emit ║
│ • Sandbox │─────────────────>║
└─────────────────┘ ║
║
║
┌─────────────────┐ subscribe ║
│ Agent Layer │<─────────────────║
│ • AgentEngine │ ║
│ • Agent │ emit ║
│ │─────────────────>║ ┌─────────────────┐
│ 4-Layer Events │ ║ │ │
│ • Stream │ ║ broadcast │ WebSocket │
│ • State │ ║════════>│ (Event Stream) │
│ • Message │ ║<════════│ │
│ • Turn │ ║ input │ AgentX API │
└─────────────────┘ ║ └─────────────────┘
║
║
┌─────────────────┐ ║
│ Runtime Layer │ ║
│ │ emit ║
│ • Persistence │─────────────────>║
│ • Container │ ║
│ • WebSocket │<─────────────────╫
│ │─────────────────>║
└─────────────────┘ ║
║
[ Event Bus ]
[ RxJS Pub/Sub ]
Event Flow:
→ Input: Client → WebSocket → BUS → Claude SDK
← Output: SDK → BUS → AgentEngine → BUS → Client
AgentX is in early development. We welcome your ideas, feedback, and feature requests!
Part of the Deepractice AI development ecosystem:
- PromptX - Prompt engineering and management framework
- DPML - Deepractice Markup Language for AI workflows
- DARP - Deepractice Agent Runtime Protocol
- Lucid-UI - AI-powered UI component library
Built with ❤️ by Deepractice

