Lightweight, fast, and production-ready anomaly detection powered by PaDiM. Deploy anywhere: edge devices, servers, or the cloud.
AnomaVision delivers state-of-the-art visual anomaly detection optimized for real-world deployment. Built for speed and efficiency, it outperforms existing solutions while maintaining a small footprint perfect for edge devices.
- ๐ฏ Superior Performance โ Higher AUROC across MVTec AD and Visa datasets
- โก 3ร Faster Inference โ Optimized for both CPU and GPU deployment
- ๐ฆ Smaller Models โ 30MB models with lower memory footprint
- ๐ Multi-Backend Export โ PyTorch, ONNX, TorchScript, OpenVINO, TensorRT, INT8 Quantization
- ๐ฅ๏ธ Production Ready โ Python API, CLI tools, C++ runtime, and REST API
- ๐จ Rich Visualizations โ Heatmaps, bounding boxes, and ROC curves
- ๐ฎ Interactive Demo โ Streamlit web interface for instant testing
CPU Inference:
| Metric | AnomaVision | Anomalib | Improvement |
|---|---|---|---|
| Training Time (s) | 8.38 | 13.07 | -35.9% |
| Inference FPS | 43.41 | 13.03 | +233% |
| ms / image | 23.0 | 76.7 | -70% |
GPU Inference (CUDA):
| Metric | AnomaVision | Anomalib | Improvement |
|---|---|---|---|
| Training Time (s) | 8.38 | 13.07 | -35.9% |
| Inference FPS | 547.46 | 355.72 | +53.9% |
| ms / image | 1.83 | 2.81 | -35.0% |
Accuracy:
- MVTec AD: Image AUROC 0.85 vs 0.81 | Pixel AUROC 0.96 vs 0.94
- Visa: Image AUROC 0.81 vs 0.78 | Pixel AUROC 0.96 vs 0.95
๐ก Download Full Performance Analysis (PDF) | Detailed Benchmarks
Using Poetry (Recommended):
git clone https://github.com/DeepKnowledge1/AnomaVision.git
cd AnomaVision
poetry install
poetry shellUsing pip:
pip install AnomaVision๐ Detailed Installation Guide
Training:
python train.py --config config.yml
# Outputs: padim_model.pt, padim_model.pth, config.ymlDetection:
python detect.py --config config.ymlEvaluation:
python eval.py --config config.ymlExport:
python export.py --config export_config.yml๐ Complete Quick Start Guide
Experience AnomaVision through our intuitive web interface:
- โก Real-time anomaly detection
- ๐ฏ Explainable AI with visual heatmaps
- ๐ Interactive threshold controls
- ๐ Batch processing support
- ๐พ Export results as JSON
- ๐ฎ No coding required
# Start FastAPI backend
uvicorn apps.api.fastapi_app:app --host 0.0.0.0 --port 8000
# Launch Streamlit demo (new terminal)
streamlit run apps/ui/streamlit_app.py -- --port 8000Open http://localhost:8501 in your browser.
๐ Streamlit Demo Guide
| Method | Best For | Key Benefits |
|---|---|---|
| ๐จ Streamlit Demo | Testing, demonstrations | Zero-code UI, instant feedback |
| ๐ FastAPI Backend | Production APIs | REST endpoints, scalable |
| ๐ฅ๏ธ C++ Runtime | Edge devices | No Python dependency, ultra-fast |
| ๐ป Python CLI | Batch processing | Scriptable, configurable |
| ๐ฆ PyPI Package | Custom integration | Import as library |
import requests
with open("test_image.jpg", "rb") as f:
response = requests.post(
"http://localhost:8000/predict",
files={"file": f},
params={"include_visualizations": True}
)
result = response.json()
print(f"Anomaly Score: {result['anomaly_score']}")
print(f"Is Anomaly: {result['is_anomaly']}")๐ FastAPI Setup Guide
Deploy without Python using our ONNX Runtime + OpenCV implementation:
- ๐ผ๏ธ Complete pipeline from preprocessing to visualization
- ๐ฆ Modular architecture
- ๐ Perfect for edge devices
๐ C++ Inference Guide
- ๐ญ Manufacturing QC โ Real-time defect detection on production lines
- ๐ฌ Medical Imaging โ Anomaly identification in X-rays, MRIs, microscopy
- ๐๏ธ Infrastructure โ Crack and corrosion detection
- ๐ฑ PCB Inspection โ Soldering defects and component issues
- ๐พ Agriculture โ Plant disease and crop monitoring
- ๐ Automotive โ Paint defects and assembly quality
- ๐ Installation
- ๐ Quick Start
- ๐จ Streamlit Demo
- ๐ FastAPI Backend
- ๐ป CLI Reference
- ๐ API Reference
- โ๏ธ Configuration
- ๐ Benchmarks
- ๐ง Troubleshooting
- ๐ค Contributing
- ๐ฌ GitHub Discussions
- ๐ Issue Tracker
- ๐ง Email Support
@software{anomavision2025,
title={AnomaVision: Edge-Ready Visual Anomaly Detection},
author={DeepKnowledge Contributors},
year={2025},
url={https://github.com/DeepKnowledge1/AnomaVision},
}Built on the foundation of Anodet. We thank the original authors for their contributions to open-source anomaly detection research.
Released under the MIT License.
Ready to get started? Follow our Quick Start Guide and build your first anomaly detection pipeline in 5 minutes!

