Skip to content

Pytorch Implementation of FedRIR (Accepted by WWW25, oral)

Notifications You must be signed in to change notification settings

Deep-Imaging-Group/FedRIR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FedRIR

This is the official PyTorch implementation of our WWW'25 Oral paper:

FedRIR: Rethinking Information Representation in Federated Learning

Overview

Overview

Requirements

  • Python 3.x
  • PyTorch
  • torchvision
  • numpy

Datasets

We conduct experiments on six datasets:

  • MNIST
  • CIFAR-10
  • CIFAR-100
  • FashionMNIST
  • OfficeCaltech10
  • DomainNet

Training

python main.py --dataset MNIST --num_clients 20 --global_epochs 1000 --join_ratio 1.0 --partition dir --alpha 0.1 --train_ratio 0.75

Citation

If you find this code useful for your research, please cite our paper:

coming soon

License

This project is licensed under the MIT License.

Contact

If you have any questions, please feel free to contact [yqhuang2912@gmail.com].

About

Pytorch Implementation of FedRIR (Accepted by WWW25, oral)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%