Skip to content

DavidFanzz/llm_decoding

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code For A Thorough Examination of Decoding Methods in the Era of LLMs

Install Requirements

pip install datasets
pip install evaluate
pip install git+https://github.com/hendrycks/math.git
pip install absl-py
pip install nltk
pip install antlr4-python3-runtime==4.11.1
pip install transformers --upgrade
pip install flash_attn
pip install torch_scatter

Generation

Take Contrastive Search (CS) For Example

model_name=Llama2
decoding_method=cs
cs_alpha=0.1
task=gsm8k
model_path=/mnt/data/models/${model_name}
python3 generate.py \
    --decoding_method ${decoding_method}\
    --infile ./data/${task}/${model_name}_input.jsonl\
    --outfile ./results/${task}/${model_name}_${decoding_method}_${cs_alpha}.jsonl\
    --model ${model_path}\
    --gpus_per_model 1\
    --world_size 4\
    --batch_size 1\
    --max_new_tokens 512\
    --cs_alpha ${cs_alpha}

Evaluation

python3 evaluation.py\
    --model ${model_name}\
    --task_name ${task}\
    --load_generations_path ./results/${task}/${model_name}_${decoding_method}.jsonl\
    --metric_output_path ./results/${task}_results.jsonl\
    --allow_code_execution

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published