AI-powered Video Analytics Platform
Upload, analyze, and visualize video data with deep learning, all in real time.
- 🎥 Video Upload & Streaming — Upload videos for analysis or stream live feeds.
- 🧠 AI-Powered Analytics — Detect, classify, and extract insights from video frames using deep learning.
- 📊 Interactive Dashboard — Visualize analytics results in real-time with beautiful charts and tables.
- ⚡ Fast & Responsive UI — Built with Next.js, Tailwind CSS, and modern React components.
- 🔌 Modular Python Pipeline — Easily extend detection/classification logic in Python.
- 🛡️ Production-Ready — Scalable, maintainable, and easy to deploy.
+---------------------------+ +-----------------------------+
| Next.js Dashboard (UI) | <-----> | Python DL Streamer API |
| (ai-video-analytics- | REST | (dl_streamer_pipeline) |
| -dashboard) | | |
+---------------------------+ +-----------------------------+
- Frontend: Next.js app for user interaction, video upload, and analytics visualization.
- Backend: Python pipeline for decoding, detecting, and classifying video frames.
| Layer | Technology |
|---|---|
| Frontend | Next.js · React · Tailwind CSS · Lucide Icons |
| Backend | Python 3 · OpenCV · Deep Learning frameworks |
| Tooling | pnpm · PostCSS · Webpack · SWC · Redux Thunk |
Aiveo/
│
├── ai-video-analytics-dashboard/ # Next.js frontend
│ ├── app/ # App directory (Next.js routing)
│ ├── components/ # Reusable React components
│ ├── hooks/ # Custom React hooks
│ ├── lib/ # Utility libraries
│ ├── public/ # Static assets
│ ├── styles/ # Tailwind/global CSS
│ ├── package.json # Frontend dependencies
│ └── ... # Configs, build, etc.
│
├── dl_streamer_pipeline/ # Python backend
│ ├── main.py # Entry point for pipeline
│ ├── decoder.py # Video decoding logic
│ ├── detector.py # Object detection logic
│ ├── classifier.py # Classification logic
│ ├── utils.py # Helper functions
│ └── requirements.txt # Python dependencies
│
└── README.md # (You are here!)
git clone https://github.com/yourusername/aiveo.git
cd aiveocd ai-video-analytics-dashboard
pnpm install
pnpm dev- The dashboard will be available at http://localhost:3000
cd ../dl_streamer_pipeline
python -m venv venv
venv\Scripts\activate # On Windows
pip install -r requirements.txt
python main.py- The backend API will start (see
main.pyfor port/config).
- Open the Dashboard: Go to http://localhost:3000
- Upload a Video: Use the upload interface to select a video file.
- View Analytics: Watch as the dashboard displays real-time analytics, charts, and detected objects.
- Explore Results: Download reports or view frame-by-frame analysis.
Watch the full walkthrough of the project here:
📺 Aiveo - Intel Unnati Project Demo
- 🏷️ Add New Models: Extend
detector.pyorclassifier.pyindl_streamer_pipelineto add new AI models. - 🎨 UI Customization: Modify components or styles in
ai-video-analytics-dashboard/componentsandstyles. - 🔗 API Integration: Update API endpoints in the frontend to match your backend configuration.
Contributions are welcome! Please open issues or submit pull requests for new features, bug fixes, or improvements.
- Fork the repo
- Create your feature branch (
git checkout -b feature/YourFeature) - Commit your changes (
git commit -am 'Add new feature') - Push to the branch (
git push origin feature/YourFeature) - Open a Pull Request
- Next.js
- Tailwind CSS
- Lucide Icons
- OpenCV
- All contributors and open-source libraries used.
Made with ❤️ for AI-powered video analytics.
For any questions or support, please open an issue on GitHub.