Skip to content

D641593/MixNet

Repository files navigation

MixNet

This is the official code for MixNet: Toward Accurate Detection of Challenging Scene Text in the Wild

docker environment

Click Here

Evaluation Result on Benchmark

Datasets Prec. (%) Recall (%) F1-score (%) weight (.pth)
Total-Text 93.0 88.1 90.5 model
MSRA-TD500 90.7 88.1 89.4 model
ICDAR-ArT 83.0 76.7 79.7 model
CTW1500 91.4 88.3 89.8 model

Evaluation Result on CTW1500

This section elucidates the performance evaluation on the CTW1500 dataset.

When utilizing the TIoU-metric-python3 scoring code, our model's scores are as presented below:

Datasets Prec. (%) Recall (%) F1-score (%)
CTW1500 90.3 84.8 87.5

However, upon inputting MixNet's output into the DPText-DETR's calculation program, the ensuing results differ:

Datasets Prec. (%) Recall (%) F1-score (%)
CTW1500 91.4 88.3 89.8

I'm not sure why the data is inconsistent. Therefore, I've provided the scores obtained from both calculations for reference.

Eval

  # Total-Text
  python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name Totaltext_mid --checkepoch 622 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 --mid True
  # CTW1500
  python3 eval_mixNet.py --net FSNet_hor --scale 1 --exp_name Ctw1500 --checkepoch 925 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85
  # MSRA-TD500
  python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name TD500HUST_mid --checkepoch 284 --test_size 640 1024 --dis_threshold 0.3 --cls_threshold 0.85 --mid True
  # ArT
  python3 eval_mixNet.py --net FSNet_M --scale 1 --exp_name ArT_mid --checkepoch 160 --test_size 960 2880 --dis_threshold 0.4 --cls_threshold 0.8 --mid True

Acknowledgement

This code has been modified based on the foundation laid by TextBPN++.
We use code from Connected_components_PyTorch as post-processing.
Thanks for their great work!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published