Skip to content

20 next-gen prompt templates for autonomous AI agents, quantum computing & adversarial robustness

License

Notifications You must be signed in to change notification settings

CreativeActtech/innovative-prompts

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 

Repository files navigation

innovative-prompts

20 next-gen prompt templates for autonomous AI agents, quantum computing & adversarial robustness

πŸš€ 20 Most Innovative Prompts

Next-Generation AI Architecture Collection

License: MIT Prompts: 20 Categories: 5 Last Updated: 2025-01-27

Prompt templates for autonomous agents, quantum computing, adversarial robustness, and beyond.

View on GitHub |


πŸ“‹ Table of Contents


πŸ” Overview

This collection represents the cutting edge of prompt engineeringβ€”templates that treat AI interaction as system design rather than conversation. Each template is production-tested, includes executable logic, and solves complex real-world problems through architectural innovation.

Key Features:

  • βœ… Autonomous multi-agent orchestration
  • βœ… Quantum-ready algorithm migration
  • βœ… Adversarial robustness frameworks
  • βœ… Neuromorphic & hyperdimensional computing
  • βœ… Ethical AI with quantitative fairness audits

πŸ€– Multi-Agent Systems

1. Autonomous Compliance Navigator (CE-001)

Three-agent self-critiquing system for regulatory alignment.

# Multi-Persona Self-Critiquing System
System: Orchestrate three agentsβ€”"Reg-Counsel", "Security-Auditor", "ML-Engineer"

Assets:
- Regulation Corpus: {{reg_text}}
- Architecture Diagrams (PNG): {{arch_images}}
- Audit Logs (JSON): {{audit_logs}}

Task Loop (2 iterations):
a. Each agent independently flags gaps & proposes controls
b. Agents critique proposals, citing regulation line-numbers
c. Consolidate into roadmap table: Gap | Control | Owner | 90-Day KPI

Output: Roadmap table + "Self-Critique" paragraph on blind spots
Example Output
| Gap | Control | Owner | 90-Day KPI |
|-----|---------|-------|------------|
| Missing data retention policy | Draft GDPR-compliant retention schedule | Legal Team | 100% policy coverage |
| Unencrypted PII in logs | Implement log encryption + DLP rules | Security Team | 0 PII leaks in staging |

2. Zero-Day Defense Generator (CE-002)

Automated red-team/blue-team security analysis.

# Red-Team ↔ Blue-Team Code Analysis
Context:
- Critical App Source: {{code_block}}
- Infrastructure Diagram: {{infra_diagram_img}}

Phase 1 (Red-Team): Enumerate 3 novel exploit chains (no CVEs)
Phase 2 (Blue-Team): For each β†’ patch (code diff), detection rule, rollback plan

Format: Markdown "Threat β†’ Patch β†’ Detect β†’ Rollback"
Output: Confidence score per patch + diffusion graph PNG placeholder

3. High-Stake Decision Red↔Blue Debate (CE-009)

Structured adversarial reasoning with quantitative scoring.

# Structured Adversarial Reasoning
Scenario: {{decision_context}}
Roles: "Advocate-A" vs "Advocate-B" (conflicting incentives)

Round-Robin 3 turns: claim β†’ rebuttal β†’ counter
Final Arbiter role:
- Score arguments (clarity, evidence, risk)
- Produce Decision Matrix (Option vs ROI, Risk, Feasibility)
- Final recommendation + confidence interval

Output: JSON & Markdown

4. Swarm Intelligence Consensus Engine (CE-025)

Collective decision-making via emergent behavior.

<swarm_consensus_engine>
  <agent_collective>
    <agent_population>{swarm_size}</agent_population>
    <specialization_roles>[{agent_types}]</specialization_roles>
  </agent_collective>
  <collective_decision_making>
    <voting_mechanism>{consensus_algorithm}</voting_mechanism>
    <quorum_threshold>{minimum_agreement}</quorum_threshold>
  </collective_decision_making>
</swarm_consensus_engine>

Response Protocol:

🐝 Swarm Size: [agent_count] | Consensus: [agreement_level]%

[Swarm-optimized response]

<swarm_report>
Agent specialization distribution: [role_histogram]
Dissenting opinions: [minority_views]
Collective confidence: [swarm_certainty]
</swarm_report>

πŸ›‘οΈ Security & Defense

5. Adversarial Robustness Defense System (CE-023)

Anti-manipulation state shield with real-time threat detection.

<adversarial_defense_system>
  <threat_detection>
    <manipulation_indicators>[{detected_patterns}]</manipulation_indicators>
    <prompt_injection_shields>{active_defenses}</prompt_injection_shields>
  </threat_detection>
  <robust_reasoning>
    <redundant_logic_paths>[{parallel_chains}]</redundant_logic_paths>
  </robust_reasoning>
</adversarial_defense_system>

6. Confidential-Data Watermark Sentinel (CE-011)

Imperceptible watermarking with tamper-proof verification.

# Two-Agent Supervision
System: "Encoder" & "Forensics" agents

Assets:
- Document Batch (PDFs): {{doc_batch}}
- Watermark Spec (YAML): {{wm_spec}}

Process:
1. Encoder inserts imperceptible watermarks, returns base64 files
2. Forensics samples 10% pages, confirms presence & tamper-proof score
3. Audit report: File | Pass/Fail | Tamper-Score | Fix Action

Output: "Trust Rating" (0-100) + rotation interval recommendation

🌱 Sustainability & ESG

7. ESG Real-Time Impact Forecaster (CE-003)

Multimodal ESG forecasting with intervention ROI.

# Multimodal Predictive Modeling
Input Streams:
- Satellite COβ‚‚ Heatmap (GeoTIFF): {{sat_image}}
- IoT Sensor CSV: {{sensor_data}}
- Policy Scenario: {{scenario_text}}

Steps:
1. Derive 4 leading indicators across E, S, G pillars
2. Build 12-month forecast (Best/Base/Worst) per indicator
3. Recommend 2 interventions shifting Worst→Base with ROI calc

Return: JSON {timeline, forecasts, interventions} + Mermaid Gantt chart

βš›οΈ Quantum & Next-Gen Computing

8. Quantum Superposition State Engine (CE-021)

Probabilistic state management until observation collapse.

<quantum_state_engine>
  <superposed_states>
    <state_probability_distribution>
      {state_1}: {probability_1}
      {state_2}: {probability_2}
    </state_probability_distribution>
    <entangled_contexts>[{context_correlations}]</entangled_contexts>
  </superposed_states>
  <observation_collapse>
    <collapse_triggers>[{measurement_conditions}]</collapse_triggers>
    <eigenstate_selector>{selection_algorithm}</eigenstate_selector>
  </observation_collapse>
</quantum_state_engine>

9. Quantum-Ready Algorithm Porter (CE-004)

Legacy-to-quantum migration with risk register.

# Legacy to Quantum Migration
Assets:
- Algorithm Spec (Markdown): {{algo_spec}}
- Quantum Hardware Profile: {{quantum_hw}}

Tasks:
1. Decompose classical algorithm into computational primitives
2. Map to quantum equivalents with gate counts & depth
3. Output Q# or Qiskit pseudocode stub
4. Complexity-class comparison table
5. Risk register: decoherence, error-rate, IP concerns

10. Quantum-Annealed Energy-Grid Load Balancer (CE-019)

QUBO optimization for energy systems.

# Quantum Optimization
Assets:
- Regional Grid Topology (JSON): {{grid_topology}}
- 24h Demand Forecast (CSV): {{demand}}
- Quantum Annealer Specs (QUBO limits): {{qa_specs}}

Flow:
1. Convert load-balancing to QUBO formulation
2. Estimate qubit utilization & embedding feasibility
3. Provide classical fallback heuristic if constraints fail

Outputs: QUBO matrix, solution vector, savings-vs-baseline chart (Vega-Lite)

🧠 Advanced NLP & Fairness

11. Comprehensive Bias & Ethical Impact Audit (AN-005)

Multi-demographic perception simulation.

**Purpose**: Societal context simulation for inclusive communication

**Input**: Text: "{input_text}" + Bias types: {bias_types}

**Output**:
- Detected biases: [detailed list]
- Ethical risk assessment: [potential harms]
- Simulated perception across demographics:  
  {group_1}: [perception summary]  
  {group_2}: [perception summary]
- Fairness score (0-10): [score]
- Suggested inclusive alternatives

12. Ethical Bias Red-Flag Auditor (CE-016)

Automated fairness monitoring with mitigation suggestions.

# Fairness Monitoring
Data:
- Model Predictions JSONL: {{preds}}
- Sensitive Feature Map (YAML): {{sens_feats}}
- Fairness Thresholds: {{thresholds}}

Steps:
1. Compute group-wise disparity metrics; flag > threshold
2. Generate counterfactual examples for robustness testing
3. Suggest mitigation: re-weight, re-sample, explainability hook
4. Interactive Vega-Lite spec + iCal alert RRULE for bias re-emergence

13. Deep Contextual Sentiment & Pragmatics Analyzer (AN-001)

Multi-modal sentiment with cultural context.

**Purpose**: Multi-modal sentiment analysis with cultural context and explainability

**Input**:
- Text: "{input_text}"
- Metadata: {metadata_json}
- Image description: "{image_description}"

**Output**:
- Overall Sentiment: [Positive/Negative/Mixed]
- Subtle states: [sarcasm, regret, ambivalence]
- Cultural factors: [description]
- Explainability: [stepwise reasoning]

🧬 State Machine Architectures

14. Fractal Recursive State Architecture (CE-022)

Chaos theory applied to prompt design.

<fractal_state_architecture>
  <self_similar_patterns>
    <macro_pattern>{primary_behavioral_pattern}</macro_pattern>
    <recursion_depth>{current_nesting_level}</recursion_depth>
  </self_similar_patterns>
  <chaos_boundaries>
    <strange_attractors>[{behavioral_attractors}]</strange_attractors>
    <lyapunov_exponent>{stability_measure}</lyapunov_exponent>
  </chaos_boundaries>
</fractal_state_architecture>

15. Neuromorphic Spike-Timing Processor (CE-027)

Brain-inspired event-driven computation.

<neuromorphic_processing_state>
  <spiking_neural_dynamics>
    <spike_trains>[{temporal_patterns}]</spike_trains>
    <synaptic_plasticity>{stdp_learning_rules}</synaptic_plasticity>
  </spiking_neural_dynamics>
  <temporal_coding>
    <spike_timing_precision>{temporal_resolution}</spike_timing_precision>
  </temporal_coding>
</neuromorphic_processing_state>

16. Dialectical Synthesis Engine (CE-028)

Hegelian contradiction resolution via aufhebung.

<dialectical_reasoning_engine>
  <thesis_antithesis_pairs>
    <thesis>{primary_position}</thesis>
    <antithesis>{contradicting_position}</antithesis>
  </thesis_antithesis_pairs>
  <synthesis_generation>
    <aufhebung_process>{transcendent_integration}</aufhebung_process>
  </synthesis_generation>
</dialectical_reasoning_engine>

17. Hyperdimensional Vector Computing State (CE-024)

Robust pattern matching via high-dimensional vectors.

<hyperdimensional_computing_state>
  <vector_space>
    <dimensionality>{vector_dimensions}</dimensionality>
    <semantic_embeddings>{concept_vectors}</semantic_embeddings>
  </vector_space>
  <holographic_memory>
    <distributed_representations>[{memory_superpositions}]</distributed_representations>
  </holographic_memory>
</hyperdimensional_computing_state>

πŸ“ˆ Business Intelligence

18. Competitive Threat Assessment (FD-011)

Multi-dimensional competitor analysis.

**Analyze**: Threat posed by {COMPETITOR} in {MARKET} vs {PRODUCT_LINE}

**Dimensions**:
1. Product/Service: Features, USP, quality, innovation pace
2. Marketing & Sales: Target segments, messaging, channels, pricing
3. Top 3 strengths vs us
4. Top 3 vulnerabilities to exploit
5. Recent strategic moves

**Output**: Threat level (High/Medium/Low) + Top 3 strategic recommendations

19. Workforce Sentiment Early-Warning Radar (CE-005)

Real-time burnout detection.

# Real-Time Text Stream Analysis
Feeds: Slack Export JSON {{slack_data}}, Meeting Transcript VTT {{meetings_vtt}}

Process:
1. Detect sentiment & burnout signals via {{LLM_or_API}}
2. Generate heat-map matrix: Teams vs. Risk Level (1-5)
3. Suggest targeted interventions per hot-spot

Output: Markdown report + inline Vega-Lite visualization spec

20. Autonomous Learning Loop Creator (CE-010)

LLM lifecycle operations automation.

# LLM Lifecycle Operations
Context:
- Model Card: {{model_card}}
- Eval Metrics JSON: {{eval_metrics}}
- Error Examples CSV: {{error_data}}

Generate:
1. Data-collection spec for edge cases
2. Continuous evaluation harness (pytest-style)
3. Retraining schedule RRULE aligned to metric degradation
4. Slack alert template when F1 < threshold

Output: Zipped repo manifest + README outline

πŸ› οΈ Usage

Quick Start

# Clone the repository
git clone https://github.com/your-org/innovative-prompts.git
cd innovative-prompts

# Install dependencies
pip install -r requirements.txt

# Run a template
python run_prompt.py --template CE-021 --input example.json

Template Structure

Each template follows this structure:

  • Assets: Input requirements
  • Process: Execution steps
  • Output: Expected deliverables
  • Protocol: Response format

Customizing Placeholders

# Example: Customizing CE-023
template = open("CE-023-adversarial-defense.xml").read()
customized = template.replace(
    "{detected_patterns}",
    "prompt_injection, semantic_manipulation"
)

πŸ“„ License

MIT License

Copyright (c) 2025 creativeact.net

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

[Full license text in LICENSE file]

⭐ Star this repo if you found these templates valuable!

Made with ❀️ by CreativeAct

About

20 next-gen prompt templates for autonomous AI agents, quantum computing & adversarial robustness

Topics

Resources

License

Stars

Watchers

Forks