20 next-gen prompt templates for autonomous AI agents, quantum computing & adversarial robustness
Prompt templates for autonomous agents, quantum computing, adversarial robustness, and beyond.
- Overview
- Multi-Agent Systems
- Security & Defense
- Sustainability & ESG
- Quantum & Next-Gen Computing
- Advanced NLP & Fairness
- State Machine Architectures
- Business Intelligence
- Usage
- License
This collection represents the cutting edge of prompt engineeringβtemplates that treat AI interaction as system design rather than conversation. Each template is production-tested, includes executable logic, and solves complex real-world problems through architectural innovation.
Key Features:
- β Autonomous multi-agent orchestration
- β Quantum-ready algorithm migration
- β Adversarial robustness frameworks
- β Neuromorphic & hyperdimensional computing
- β Ethical AI with quantitative fairness audits
Three-agent self-critiquing system for regulatory alignment.
# Multi-Persona Self-Critiquing System
System: Orchestrate three agentsβ"Reg-Counsel", "Security-Auditor", "ML-Engineer"
Assets:
- Regulation Corpus: {{reg_text}}
- Architecture Diagrams (PNG): {{arch_images}}
- Audit Logs (JSON): {{audit_logs}}
Task Loop (2 iterations):
a. Each agent independently flags gaps & proposes controls
b. Agents critique proposals, citing regulation line-numbers
c. Consolidate into roadmap table: Gap | Control | Owner | 90-Day KPI
Output: Roadmap table + "Self-Critique" paragraph on blind spotsExample Output
| Gap | Control | Owner | 90-Day KPI |
|-----|---------|-------|------------|
| Missing data retention policy | Draft GDPR-compliant retention schedule | Legal Team | 100% policy coverage |
| Unencrypted PII in logs | Implement log encryption + DLP rules | Security Team | 0 PII leaks in staging |Automated red-team/blue-team security analysis.
# Red-Team β Blue-Team Code Analysis
Context:
- Critical App Source: {{code_block}}
- Infrastructure Diagram: {{infra_diagram_img}}
Phase 1 (Red-Team): Enumerate 3 novel exploit chains (no CVEs)
Phase 2 (Blue-Team): For each β patch (code diff), detection rule, rollback plan
Format: Markdown "Threat β Patch β Detect β Rollback"
Output: Confidence score per patch + diffusion graph PNG placeholderStructured adversarial reasoning with quantitative scoring.
# Structured Adversarial Reasoning
Scenario: {{decision_context}}
Roles: "Advocate-A" vs "Advocate-B" (conflicting incentives)
Round-Robin 3 turns: claim β rebuttal β counter
Final Arbiter role:
- Score arguments (clarity, evidence, risk)
- Produce Decision Matrix (Option vs ROI, Risk, Feasibility)
- Final recommendation + confidence interval
Output: JSON & MarkdownCollective decision-making via emergent behavior.
<swarm_consensus_engine>
<agent_collective>
<agent_population>{swarm_size}</agent_population>
<specialization_roles>[{agent_types}]</specialization_roles>
</agent_collective>
<collective_decision_making>
<voting_mechanism>{consensus_algorithm}</voting_mechanism>
<quorum_threshold>{minimum_agreement}</quorum_threshold>
</collective_decision_making>
</swarm_consensus_engine>Response Protocol:
π Swarm Size: [agent_count] | Consensus: [agreement_level]%
[Swarm-optimized response]
<swarm_report>
Agent specialization distribution: [role_histogram]
Dissenting opinions: [minority_views]
Collective confidence: [swarm_certainty]
</swarm_report>Anti-manipulation state shield with real-time threat detection.
<adversarial_defense_system>
<threat_detection>
<manipulation_indicators>[{detected_patterns}]</manipulation_indicators>
<prompt_injection_shields>{active_defenses}</prompt_injection_shields>
</threat_detection>
<robust_reasoning>
<redundant_logic_paths>[{parallel_chains}]</redundant_logic_paths>
</robust_reasoning>
</adversarial_defense_system>Imperceptible watermarking with tamper-proof verification.
# Two-Agent Supervision
System: "Encoder" & "Forensics" agents
Assets:
- Document Batch (PDFs): {{doc_batch}}
- Watermark Spec (YAML): {{wm_spec}}
Process:
1. Encoder inserts imperceptible watermarks, returns base64 files
2. Forensics samples 10% pages, confirms presence & tamper-proof score
3. Audit report: File | Pass/Fail | Tamper-Score | Fix Action
Output: "Trust Rating" (0-100) + rotation interval recommendationMultimodal ESG forecasting with intervention ROI.
# Multimodal Predictive Modeling
Input Streams:
- Satellite COβ Heatmap (GeoTIFF): {{sat_image}}
- IoT Sensor CSV: {{sensor_data}}
- Policy Scenario: {{scenario_text}}
Steps:
1. Derive 4 leading indicators across E, S, G pillars
2. Build 12-month forecast (Best/Base/Worst) per indicator
3. Recommend 2 interventions shifting WorstβBase with ROI calc
Return: JSON {timeline, forecasts, interventions} + Mermaid Gantt chartProbabilistic state management until observation collapse.
<quantum_state_engine>
<superposed_states>
<state_probability_distribution>
{state_1}: {probability_1}
{state_2}: {probability_2}
</state_probability_distribution>
<entangled_contexts>[{context_correlations}]</entangled_contexts>
</superposed_states>
<observation_collapse>
<collapse_triggers>[{measurement_conditions}]</collapse_triggers>
<eigenstate_selector>{selection_algorithm}</eigenstate_selector>
</observation_collapse>
</quantum_state_engine>Legacy-to-quantum migration with risk register.
# Legacy to Quantum Migration
Assets:
- Algorithm Spec (Markdown): {{algo_spec}}
- Quantum Hardware Profile: {{quantum_hw}}
Tasks:
1. Decompose classical algorithm into computational primitives
2. Map to quantum equivalents with gate counts & depth
3. Output Q# or Qiskit pseudocode stub
4. Complexity-class comparison table
5. Risk register: decoherence, error-rate, IP concernsQUBO optimization for energy systems.
# Quantum Optimization
Assets:
- Regional Grid Topology (JSON): {{grid_topology}}
- 24h Demand Forecast (CSV): {{demand}}
- Quantum Annealer Specs (QUBO limits): {{qa_specs}}
Flow:
1. Convert load-balancing to QUBO formulation
2. Estimate qubit utilization & embedding feasibility
3. Provide classical fallback heuristic if constraints fail
Outputs: QUBO matrix, solution vector, savings-vs-baseline chart (Vega-Lite)Multi-demographic perception simulation.
**Purpose**: Societal context simulation for inclusive communication
**Input**: Text: "{input_text}" + Bias types: {bias_types}
**Output**:
- Detected biases: [detailed list]
- Ethical risk assessment: [potential harms]
- Simulated perception across demographics:
{group_1}: [perception summary]
{group_2}: [perception summary]
- Fairness score (0-10): [score]
- Suggested inclusive alternativesAutomated fairness monitoring with mitigation suggestions.
# Fairness Monitoring
Data:
- Model Predictions JSONL: {{preds}}
- Sensitive Feature Map (YAML): {{sens_feats}}
- Fairness Thresholds: {{thresholds}}
Steps:
1. Compute group-wise disparity metrics; flag > threshold
2. Generate counterfactual examples for robustness testing
3. Suggest mitigation: re-weight, re-sample, explainability hook
4. Interactive Vega-Lite spec + iCal alert RRULE for bias re-emergenceMulti-modal sentiment with cultural context.
**Purpose**: Multi-modal sentiment analysis with cultural context and explainability
**Input**:
- Text: "{input_text}"
- Metadata: {metadata_json}
- Image description: "{image_description}"
**Output**:
- Overall Sentiment: [Positive/Negative/Mixed]
- Subtle states: [sarcasm, regret, ambivalence]
- Cultural factors: [description]
- Explainability: [stepwise reasoning]Chaos theory applied to prompt design.
<fractal_state_architecture>
<self_similar_patterns>
<macro_pattern>{primary_behavioral_pattern}</macro_pattern>
<recursion_depth>{current_nesting_level}</recursion_depth>
</self_similar_patterns>
<chaos_boundaries>
<strange_attractors>[{behavioral_attractors}]</strange_attractors>
<lyapunov_exponent>{stability_measure}</lyapunov_exponent>
</chaos_boundaries>
</fractal_state_architecture>Brain-inspired event-driven computation.
<neuromorphic_processing_state>
<spiking_neural_dynamics>
<spike_trains>[{temporal_patterns}]</spike_trains>
<synaptic_plasticity>{stdp_learning_rules}</synaptic_plasticity>
</spiking_neural_dynamics>
<temporal_coding>
<spike_timing_precision>{temporal_resolution}</spike_timing_precision>
</temporal_coding>
</neuromorphic_processing_state>Hegelian contradiction resolution via aufhebung.
<dialectical_reasoning_engine>
<thesis_antithesis_pairs>
<thesis>{primary_position}</thesis>
<antithesis>{contradicting_position}</antithesis>
</thesis_antithesis_pairs>
<synthesis_generation>
<aufhebung_process>{transcendent_integration}</aufhebung_process>
</synthesis_generation>
</dialectical_reasoning_engine>Robust pattern matching via high-dimensional vectors.
<hyperdimensional_computing_state>
<vector_space>
<dimensionality>{vector_dimensions}</dimensionality>
<semantic_embeddings>{concept_vectors}</semantic_embeddings>
</vector_space>
<holographic_memory>
<distributed_representations>[{memory_superpositions}]</distributed_representations>
</holographic_memory>
</hyperdimensional_computing_state>Multi-dimensional competitor analysis.
**Analyze**: Threat posed by {COMPETITOR} in {MARKET} vs {PRODUCT_LINE}
**Dimensions**:
1. Product/Service: Features, USP, quality, innovation pace
2. Marketing & Sales: Target segments, messaging, channels, pricing
3. Top 3 strengths vs us
4. Top 3 vulnerabilities to exploit
5. Recent strategic moves
**Output**: Threat level (High/Medium/Low) + Top 3 strategic recommendationsReal-time burnout detection.
# Real-Time Text Stream Analysis
Feeds: Slack Export JSON {{slack_data}}, Meeting Transcript VTT {{meetings_vtt}}
Process:
1. Detect sentiment & burnout signals via {{LLM_or_API}}
2. Generate heat-map matrix: Teams vs. Risk Level (1-5)
3. Suggest targeted interventions per hot-spot
Output: Markdown report + inline Vega-Lite visualization specLLM lifecycle operations automation.
# LLM Lifecycle Operations
Context:
- Model Card: {{model_card}}
- Eval Metrics JSON: {{eval_metrics}}
- Error Examples CSV: {{error_data}}
Generate:
1. Data-collection spec for edge cases
2. Continuous evaluation harness (pytest-style)
3. Retraining schedule RRULE aligned to metric degradation
4. Slack alert template when F1 < threshold
Output: Zipped repo manifest + README outline# Clone the repository
git clone https://github.com/your-org/innovative-prompts.git
cd innovative-prompts
# Install dependencies
pip install -r requirements.txt
# Run a template
python run_prompt.py --template CE-021 --input example.jsonEach template follows this structure:
- Assets: Input requirements
- Process: Execution steps
- Output: Expected deliverables
- Protocol: Response format
# Example: Customizing CE-023
template = open("CE-023-adversarial-defense.xml").read()
customized = template.replace(
"{detected_patterns}",
"prompt_injection, semantic_manipulation"
)MIT License
Copyright (c) 2025 creativeact.net
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
[Full license text in LICENSE file]
β Star this repo if you found these templates valuable!
Made with β€οΈ by CreativeAct