-
Notifications
You must be signed in to change notification settings - Fork 50
Open
Description
Hello. I wanted to use gritlm to a open-source embedding model —— gte-qwen2-7b-instruct, but I encountered some problems:
[rank1]: Traceback (most recent call last):
[rank1]: File "/code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/run.py", line 438, in <module>
[rank1]: main()
[rank1]: File "/code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/run.py", line 420, in main
[rank1]: trainer.train()
[rank1]: File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 1859, in train
[rank1]: return inner_training_loop(
[rank1]: File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 2203, in _inner_training_loop
[rank1]: tr_loss_step = self.training_step(model, inputs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 3138, in training_step
[rank1]: loss = self.compute_loss(model, inputs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 3161, in compute_loss
[rank1]: outputs = model(**inputs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank1]: return self._call_impl(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank1]: return forward_call(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/distributed.py", line 1608, in forward
[rank1]: else self._run_ddp_forward(*inputs, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/parallel/distributed.py", line 1426, in _run_ddp_forward
[rank1]: return self.module(*inputs, **kwargs) # type: ignore[index]
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank1]: return self._call_impl(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank1]: return forward_call(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/accelerate/utils/operations.py", line 825, in forward
[rank1]: return model_forward(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/accelerate/utils/operations.py", line 813, in __call__
[rank1]: return convert_to_fp32(self.model_forward(*args, **kwargs))
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/amp/autocast_mode.py", line 16, in decorate_autocast
[rank1]: return func(*args, **kwargs)
[rank1]: File "/code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/model.py", line 204, in forward
[rank1]: p_reps = self.encode(passage)
[rank1]: File "/code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/model.py", line 145, in encode
[rank1]: out = (getattr(self.model, self.embedding_attr) if self.embedding_attr else self.model)(**kwargs)[0]
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank1]: return self._call_impl(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank1]: return forward_call(*args, **kwargs)
[rank1]: File "/root/.cache/huggingface/modules/transformers_modules/gte-qwen2-7B-instruct/modeling_qwen.py", line 1081, in forward
[rank1]: layer_outputs = decoder_layer(
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[rank1]: return self._call_impl(*args, **kwargs)
[rank1]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[rank1]: return forward_call(*args, **kwargs)
[rank1]: File "/root/.cache/huggingface/modules/transformers_modules/gte-qwen2-7B-instruct/modeling_qwen.py", line 795, in forward
[rank1]: hidden_states = residual + hidden_states
[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 56.00 MiB. GPU 1 has a total capacity of 79.33 GiB of which 35.81 MiB is free. Process 2768284 has 79.28 GiB memory in use. Of the allocated memory 77.51 GiB is allocated by PyTorch, and 761.60 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
My GPU is A800, 80G, and I used 8 * A800.
My submit script is following:
#!/bin/bash
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
export WANDB_DISABLED=true
export PYTHONPATH=/code/xx/LLM_mine/recall/reference/gritlm
echo "====MASTER_ADDR===="
echo $MASTER_ADDR
MASTER_ADDR=$(ping -c 1 ${MASTER_ADDR} |grep PING | grep -E -o '([0-9]{1,3}\.){3}[0-9]{1,3}')
echo $MASTER_ADDR
echo "==================="
# pip install /code/xx/LLM_mine/recall/reference/gritlm
pip install transformers==4.40.0 accelerate==0.29.1 datasets==2.18.0
pip install /code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/GradCache
torchrun --nnodes $WORLD_SIZE --nproc_per_node 8 --rdzv_id=100 --rdzv_backend=c10d --rdzv_endpoint=${MASTER_ADDR}:${MASTER_PORT} \
/code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/run.py \
--output_dir /code/xx/LLM_mine/recall/reference/gritlm/output \
--model_name_or_path /code/xx/LLM_mine/recall/model/gte-qwen2-7B-instruct \
--train_data /code/xx/LLM_mine/recall/reference/gritlm/gritlm/training/toy_data/cv_embedding.jsonl \
--learning_rate 1e-5 \
--num_train_epochs 3 \
--per_device_train_batch_size 2 \
--dataloader_drop_last True \
--normalized True \
--temperature 0.02 \
--query_max_len 256 \
--passage_max_len 2048 \
--train_group_size 2 \
--mode embedding \
--attn bbcc \
--attn_implementation sdpa \
--bf16
How can I solve this problem?
Metadata
Metadata
Assignees
Labels
No labels