Codes for Mechanism-Driven Screening of Membrane-Targeting and Pore-Forming Antimicrobial Peptides
- thundersvm
- transformers (for prot_bert_bfd)
- torch
- sklearn
- numpy
- matplotlib
- pickleshare
- tensorflow==1.7.0 (if you are using tensorflow 2, please modify the script with 'import tensorflow.compat.v1 as tf')
python train_val.pypython train_10fold.pypython predict.py- Note: The length of input peptide should not be longer than 40 amino acids.
pip install -r requirements.txt- Input features are generated from SPIDER3-Single (Heffernan, R. et al., J Comput Chem 2018). Download
python MCPpep_predictor.py ./example testpython CMpep_predictor.py ./example test- Note: The complete parameter files can be downloaded at here.
python plot_dimer.py test@article{Li2025AMP,
author = {Li, Jiaxuan and Yang, Chenguang and Dong, Ruihan and Juarez, Juan Francisco Bada and Wang, Lei and Wettstein, Maximilian Emanuel and Wang, Dali and Cao, Chan and Lu, Ying and Song, Chen},
title = {Mechanism-Driven Screening of Membrane-Targeting and Pore-Forming Antimicrobial Peptides},
journal = {Advanced Science},
pages = {e16470},
doi = {https://doi.org/10.1002/advs.202516470},
year = {2025}
}