Skip to content

Commit

Permalink
a face emotion detector by caizheng
Browse files Browse the repository at this point in the history
  • Loading branch information
coldzoo committed Jan 22, 2016
0 parents commit eb122ff
Show file tree
Hide file tree
Showing 4 changed files with 21,019 additions and 0 deletions.
80 changes: 80 additions & 0 deletions RunOnlineFaceEmotionDetecter.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
# -*-coding:utf-8-*-
import cv2
import numpy as np
import caffe
import os

SKIPCOUNT = 5 #跳帧数目

def fe_init():
global caffe_root
global net
global transformer
caffe.set_mode_gpu()
net = caffe.Net('deploy.prototxt', 'fe_train_iter_40000.caffemodel', caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2, 0, 1))
transformer.set_mean('data', np.load('fe_test_mean.npy').mean(1).mean(1))
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2, 1, 0))
net.blobs['data'].reshape(50, 3, 227, 227)

def fe_predict(file_name):
global net
net.blobs['data'].data[...] = transformer.preprocess('data', caffe.io.load_image(file_name))
out = net.forward()
labels = np.loadtxt('synset_words.txt', str, delimiter='\t')
top_k = net.blobs['prob'].data[0].flatten().argsort()[-1:-6:-1]
#print(labels[out['prob'].argmax()])
index = out['prob'].argmax()
#print(out['prob'][index, index])
return [labels[out['prob'].argmax()], out['prob'][index, index]]


cv2.namedWindow('faceDetect')
cap = cv2.VideoCapture(0) #打开0号摄像头
success, frame = cap.read()#读取一桢图像,前一个返回值是是否成功,后一个返回值是图像本身
size = frame.shape[:2]#获得当前桢彩色图像的大小
color = (255, 0, 0)#设置人脸框的颜色
classifier = cv2.CascadeClassifier("haarcascade_frontalface_alt2.xml")#定义分类器
faceid = 0
fe_init()
skipcount = SKIPCOUNT#每SKIPCOUNT帧判断一帧
while success:
success, frame = cap.read()
image = np.zeros(size, dtype=np.float16)#定义一个与当前桢图像大小相同的的灰度图像矩阵
image = cv2.cvtColor(frame, cv2.cv.CV_BGR2GRAY)#将当前桢图像转换成灰度图像
cv2.equalizeHist(image, image)#灰度图像进行直方图等距化

#如下三行是设定最小图像的大小
divisor = 8
h, w = size
minSize = (w/divisor, h/divisor)
faceRects = classifier.detectMultiScale(image, 1.1, 4, cv2.CASCADE_SCALE_IMAGE, minSize)#人脸检测
if len(faceRects) > 0: # 如果人脸数组长度大于0
faceRect = faceRects[0]
x, y, w, h = faceRect
if w > 0 and skipcount == 0:
skipcount = SKIPCOUNT
im = image[y:y+w, x:x+h]
save_name = 'test/face'+str(faceid)+'.jpg'
faceid += 1
im = cv2.resize(im, (227, 227))
cv2.imwrite(save_name, im)
[emotion, confidence] = fe_predict(save_name)
os.remove(save_name)
if confidence > 0.5:
print(emotion)
elif w > 0:
skipcount -= 1
cv2.rectangle(image, (x, y), (x+w, y+h), color)
cv2.imshow("faceDetect", image)#显示图像

key= cv2.waitKey(10)
c = chr(key & 255)
if c in ['q', 'Q', chr(27)]:
break



cv2.destroyWindow("faceDetect")
212 changes: 212 additions & 0 deletions deploy.prototxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
name: "CaffeNet"
input: "data"
input_dim: 10
input_dim: 3
input_dim: 227
input_dim: 227
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "myfc8"
type: "InnerProduct"
bottom: "fc7"
top: "myfc8"
inner_product_param {
num_output: 7
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "myfc8"
top: "prob"
}
Loading

0 comments on commit eb122ff

Please sign in to comment.