A JavaScript library to work with Exonum blockchain from browser and Node.js. Used to sign transactions before sending to blockchain and verify blockchain responses using cryptographic proofs. Contains numerous helper functions. Find out more information about the architecture and tasks of light clients in Exonum.
Library compatibility with Exonum core:
JavaScript light client | Exonum core |
---|---|
0.12.1 | 0.9.* |
0.10.2 | 0.8.* |
0.9.0 | 0.7.* |
0.6.1 | 0.6.* |
0.6.1 | 0.5.* |
0.3.0 | 0.4.0 |
0.3.0 | 0.3.0 |
0.2.0 | 0.2.0 |
0.1.1 | 0.1.* |
- Getting started
- Data types
- Serialization
- Hash
- Signature
- Transactions
- Cryptographic proofs
- Integrity checks
- Helpers
- Contributing
- Changelog
- License
There are several options to include light client library in the application:
The most preferred way is to install Exonum Client as a package from npm registry:
npm install exonum-client
Otherwise you can download the source code from GitHub and compile it before use in browser.
Include in browser:
<script src="node_modules/exonum-client/dist/exonum-client.min.js"></script>
Usage in Node.js:
let Exonum = require('exonum-client')
The definition of data structures is the main part of each application based on Exonum blockchain.
On the one hand, each transaction must be signed before sending into blockchain. Before the transaction is signed it is converted into byte array under the hood.
On the other hand, the data received from the blockchain should be converted into byte array under the hood before it will be possible to verify proof of its existence using cryptographic algorithm.
Converting data into a byte array is called serialization. To get the same serialization result on the client and on the service side, there must be a strict serialization rules. This rules are formed by the data structure definition.
let type = Exonum.newType({
fields: [
{ name: 'balance', type: Exonum.Uint32 },
{ name: 'name', type: Exonum.String }
]
})
Exonum.newType function requires a single argument of Object
type with next structure:
Property | Description | Type |
---|---|---|
fields | List of fields. | Array |
Field structure:
Field | Description | Type |
---|---|---|
name | Field name. | String |
type | Definition of the field type. | Built-in type, array or custom data type defined by the developer. |
There are several primitive types are built it into the library. These types must be used when constructing custom data types.
Name | Description | Type |
---|---|---|
Int8 | Number in a range from -128 to 127 . |
Number |
Int16 | Number in a range from -32768 to 32767 . |
Number |
Int32 | Number in a range from -2147483648 to 2147483647 . |
Number |
Int64 | Number in a range from -9223372036854775808 to 9223372036854775807 . |
Number or String * |
Uint8 | Number in a range from 0 to 255 . |
Number |
Uint16 | Number in a range from 0 to 65535 . |
Number |
Uint32 | Number in a range from 0 to 4294967295 . |
Number |
Uint64 | Number in a range from 0 to 18446744073709551615 . |
Number or String * |
Float32 | Floating point number in a range from -3.40282347e+38f32 to 3.40282347e+38f32 . |
Number or String * |
Float64 | Floating point number in a range from -1.7976931348623157e+308f64 to 1.7976931348623157e+308f64 . |
Number or String * |
Decimal | Decimal fixed point 79228162514264337593543950336 * 10^-28 to 79228162514264337593543950336 . |
String * |
String | A string of variable length consisting of UTF-8 characters. | String |
Hash | Hexadecimal string. | String |
PublicKey | Hexadecimal string. | String |
Digest | Hexadecimal string. | String |
Uuid | Hexadecimal string. | String |
Bool | Value of boolean type. | Boolean |
*JavaScript limits minimum and maximum integer number.
Minimum safe integer in JavaScript is -(2^53-1)
which is equal to -9007199254740991
.
Maximum safe integer in JavaScript is 2^53-1
which is equal to 9007199254740991
.
For unsafe numbers out of the safe range use String
only.
To determine either number is safe use built-in JavaScript function
Number.isSafeInteger().
Custom data type defined by the developer can be a field of other custom data type.
An example of a nested type:
// Define a nested data type
let date = Exonum.newType({
fields: [
{ name: 'day', type: Exonum.Uint8 },
{ name: 'month', type: Exonum.Uint8 },
{ name: 'year', type: Exonum.Uint16 }
]
})
// Define a data type
let payment = Exonum.newType({
fields: [
{ name: 'date', type: date },
{ name: 'amount', type: Exonum.Uint64 }
]
})
There is no limitation on the depth of nested data types.
The array in the light client library corresponds to the vector structure in the Rust language.
Exonum.newArray function requires a single argument of Object
type with next structure:
Property | Description | Type |
---|---|---|
type | Definition of the field type. | Built-in type, array or custom data type defined by the developer. |
An example of an array type field:
// Define an array
let year = Exonum.newArray({
type: Exonum.Uint16
})
// Define a data type
let type = Exonum.newType({
fields: [
{ name: 'years', type: year }
]
})
An example of an array nested in an array:
// Define an array
let distance = Exonum.newArray({
type: Exonum.Uint32
})
// Define an array with child elements of an array type
let distances = Exonum.newArray({
type: distance
})
// Define a data type
let type = Exonum.newType({
fields: [
{ name: 'measurements', type: distances }
]
})
Each serializable data type has its (de)serialization rules, which govern how the instances of this type are (de)serialized from/to a binary buffer. Check serialization guide for details.
Signature of serialize
function:
type.serialize(data, cutSignature)
Argument | Description | Type |
---|---|---|
data | Data to serialize. | Object |
type | Definition of the field type. | Custom data type or transaction. |
cutSignature | This flag is relevant only for transaction type. Specifies whether to not include a signature into the resulting byte array. Optional. | Boolean |
An example of serialization into a byte array:
// Define a data type
let user = Exonum.newType({
fields: [
{ name: 'firstName', type: Exonum.String },
{ name: 'lastName', type: Exonum.String },
{ name: 'age', type: Exonum.Uint8 },
{ name: 'balance', type: Exonum.Uint32 }
]
})
// Data to be serialized
const data = {
firstName: 'John',
lastName: 'Doe',
age: 28,
balance: 2500
}
// Serialize
let buffer = user.serialize(data) // [21, 0, 0, 0, 4, 0, 0, 0, 25, 0, 0, 0, 3, 0, 0, 0, 28, 196, 9, 0, 0, 74, 111, 104, 110, 68, 111, 101]
The value of the buffer
array:
Exonum uses cryptographic hashes of certain data for transactions and proofs.
Different signatures of the hash
function are possible:
Exonum.hash(data, type)
type.hash(data)
Argument | Description | Type |
---|---|---|
data | Data to be processed using a hash function. | Object |
type | Definition of the data type. | Custom data type or transaction. |
An example of hash calculation:
// Define a data type
let user = Exonum.newType({
fields: [
{ name: 'firstName', type: Exonum.String },
{ name: 'lastName', type: Exonum.String },
{ name: 'age', type: Exonum.Uint8 },
{ name: 'balance', type: Exonum.Uint32 }
]
})
// Data that has been hashed
const data = {
firstName: 'John',
lastName: 'Doe',
age: 28,
balance: 2500
}
// Get a hash
let hash = user.hash(data) // 1e53d91704b4b6adcbea13d2f57f41cfbdee8f47225e99bb1ff25d85474185af
It is also possible to get a hash from byte array:
Exonum.hash(buffer)
Argument | Description | Type |
---|---|---|
buffer | Byte array. | Array or Uint8Array . |
An example of byte array hash calculation:
const arr = [132, 0, 0, 5, 89, 64, 0, 7]
let hash = Exonum.hash(arr) // 9518aeb60d386ae4b4ecc64e1a464affc052e4c3950c58e32478c0caa9e414db
The procedure for signing data using signing key pair and verifying of obtained signature is commonly used in the process of data exchange between the client and the service.
Built-in Exonum.keyPair helper function can be used to generate a new random signing key pair.
The signature can be obtained using the secret key of the signing pair.
There are three possible signatures of the sign
function:
Exonum.sign(secretKey, data, type)
type.sign(secretKey, data)
Exonum.sign(secretKey, buffer)
Argument | Description | Type |
---|---|---|
secretKey | Secret key as hexadecimal string. | String |
data | Data to be signed. | Object |
type | Definition of the data type. | Custom data type or transaction. |
buffer | Byte array. | Array or Uint8Array . |
The sign
function returns value as hexadecimal String
.
An example of data signing:
// Define a data type
let user = Exonum.newType({
fields: [
{ name: 'firstName', type: Exonum.String },
{ name: 'lastName', type: Exonum.String },
{ name: 'age', type: Exonum.Uint8 },
{ name: 'balance', type: Exonum.Uint32 }
]
})
// Data to be signed
const data = {
firstName: 'John',
lastName: 'Doe',
age: 28,
balance: 2500
}
// Define a signing key pair
const keyPair = {
publicKey: 'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a',
secretKey: '978e3321bd6331d56e5f4c2bdb95bf471e95a77a6839e68d4241e7b0932ebe2b' +
'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a'
}
// Sign the data
let signature = Exonum.sign(keyPair.secretKey, data, user)
The signature can be verified using the author's public key.
There are two possible signatures of the verifySignature
function:
Exonum.verifySignature(signature, publicKey, data, type)
type.verifySignature(signature, publicKey, data)
Argument | Description | Type |
---|---|---|
signature | Signature as hexadecimal string. | String |
publicKey | Public key as hexadecimal string. | String |
data | Data that has been signed. | Object |
type | Definition of the data type. | Custom data type or transaction. |
The verifySignature
function returns value of Boolean
type.
An example of signature verification:
// Define a data type
let user = Exonum.newType({
fields: [
{ name: 'firstName', type: Exonum.String },
{ name: 'lastName', type: Exonum.String },
{ name: 'age', type: Exonum.Uint8 },
{ name: 'balance', type: Exonum.Uint32 }
]
})
// Data that has been signed
const data = {
firstName: 'John',
lastName: 'Doe',
age: 28,
balance: 2500
}
// Define a signing key pair
const keyPair = {
publicKey: 'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a',
secretKey: '978e3321bd6331d56e5f4c2bdb95bf471e95a77a6839e68d4241e7b0932ebe2b' +
'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a'
}
// Signature obtained upon signing using secret key
const signature = '41884c5270631510357bb37e6bcbc8da61603b4bdb05a2c70fc11d6624792e07' +
'c99321f8cffac02bbf028398a4118801a2cf1750f5de84cc654f7bf0df71ec00'
// Verify the signature
let result = Exonum.verifySignature(signature, publicKey, data, user) // true
Transaction in Exonum is a operation to change the data stored in blockchain. Transaction processing rules is a part of business logic implemented on service side.
Sending data to the blockchain from a light client consist of 3 steps:
- Describe the fields of transaction using custom data types;
- Sign data of transaction using signing key pair;
- Send transaction to the blockchain.
Read more about transactions in Exonum.
An example of a transaction definition:
let sendFunds = Exonum.newMessage({
protocol_version: 0,
service_id: 130,
message_id: 128,
fields: [
{ name: 'from', type: Exonum.Hash },
{ name: 'to', type: Exonum.Hash },
{ name: 'amount', type: Exonum.Uint64 }
]
})
Exonum.newMessage function requires a single argument of Object
type with next structure:
Property | Description | Type |
---|---|---|
protocol_version | Protocol version. | Number |
service_id | Service ID. | Number |
message_id | Message ID. | Number |
signature | Signature as hexadecimal string. Optional. | String |
fields | List of fields. | Array |
Field structure is identical to field structure of custom data type.
An example of a transaction signing:
// Signing key pair
const keyPair = {
publicKey: 'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a',
secretKey: '978e3321bd6331d56e5f4c2bdb95bf471e95a77a6839e68d4241e7b0932ebe2b' +
'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a'
}
// Transaction data to be signed
const data = {
from: 'fa7f9ee43aff70c879f80fa7fd15955c18b98c72310b09e7818310325050cf7a',
to: 'f7ea8fd02cb41cc2cd45fd5adc89ca1bf605b2e31f796a3417ddbcd4a3634647',
amount: 1000
}
// Sign the data
let signature = sendFunds.sign(keyPair.secretKey, data)
To submit transaction to the blockchain send
function can be used.
There are two possible signatures of the send
function:
Exonum.send(transactionEndpoint, explorerBasePath, data, signature, sendFunds, timeout, attempts)
sendFunds.send(transactionEndpoint, explorerBasePath, data, signature, timeout, attempts)
Property | Description | Type |
---|---|---|
transactionEndpoint | API address of transaction handler on a blockchain node. | String |
explorerBasePath | API address of transaction explorer on a blockchain node. | String |
data | Data that has been signed. | Object |
signature | Signature as hexadecimal string. | String |
type | Definition of the transaction. | Transaction. |
timeout | Timeout between attempts to check transaction status. Optional. Default value is 500 . |
Number |
attempts | Number of attempts to check transaction status. Optional. Default value is 10 . |
Number |
The send
function returns value of Promise
type.
Fulfilled state means that transaction is accepted to the block.
Fulfilled value contained transaction with its proof.
An example of a transaction sending:
// Define transaction handler address
const transactionEndpoint = 'http://127.0.0.1:8200/api/services/cryptocurrency/v1/wallets'
// Define transaction explorer address
const explorerBasePath = 'http://127.0.0.1:8200/api/explorer/v1/transactions?hash='
sendFunds.send(transactionEndpoint, explorerBasePath, data, signature)
To submit multiple transactions to the blockchain sendQueue
function can be used.
Transactions will be stored in the appropriate order.
Each transaction from the queue will be sent to the blockchain only after the previous transaction is accepted to the block.
Exonum.sendQueue(transactionEndpoint, explorerBasePath, transactions, timeout, attempts)
Property | Description | Type |
---|---|---|
transactionEndpoint | API address of transaction handler on a blockchain node. | String |
explorerBasePath | API address of transaction explorer on a blockchain node. | String |
transactions | List of transactions. | Array |
timeout | Timeout between attempts to check each transaction status. Optional. Default value is 500 . |
Number |
attempts | Number of attempts to check each transaction status. Optional. Default value is 10 . |
Number |
Transaction structure:
Field | Description | Type |
---|---|---|
data | Transaction data that has been signed. | Object |
signature | Signature as hexadecimal string. | String |
type | Definition of the transaction. | Transaction. |
The sendQueue
function returns value of Promise
type.
Fulfilled state means that all transactions are accepted to the block.
Fulfilled value contained an array of transactions with its proofs.
Find more examples of operations on transactions:
- Define transaction
- Serialize transaction
- Sign transaction
- Verify signed transaction
- Get a transaction hash
- Send transaction
- Send multiple transactions
A cryptographic proof is a format in which a Exonum node can provide sensitive data from a blockchain. These proofs are based on Merkle trees and their variants.
Light client library validates the cryptographic proof and can prove the integrity and reliability of the received data.
Read more about design of cryptographic proofs in Exonum.
let elements = Exonum.merkleProof(rootHash, count, tree, range, type)
The merkleProof
method is used to validate the Merkle tree and extract a list of data elements.
Argument | Description | Type |
---|---|---|
rootHash | The root hash of the Merkle tree as hexadecimal string. | String |
count | The total number of elements in the Merkle tree. | Number |
proofNode | The Merkle tree. | Object |
range | An array of two elements of Number type. Represents list of obtained elements: [startIndex; endIndex) . |
Array |
type | Definition of the elements type. Optional. The merkleProof method expects to find byte arrays or hashes as values in the tree if type is not passed. |
Custom data type |
An example of verifying a Merkle tree.
let proof = new Exonum.MapProof(json, KeyType, ValueType)
console.log(proof.entries)
The MapProof
class is used to validate proofs for Merkelized maps.
Argument | Description | Type |
---|---|---|
json | The JSON presentation of the proof obtained from a full node. | Object |
KeyType | Data type for keys in the Merkelized map. | Custom or built-in data type |
ValueType | Data type for values in the Merkelized map. | Custom data type |
The returned object has the following fields:
Field | Description | Type |
---|---|---|
merkleRoot | Hexadecimal hash of the root of the underlying Merkelized map | String |
missingKeys | Set of keys which the proof asserts as missing from the map | Set<KeyType> |
entries | Map of key-value pairs that the are proved to exist in the map | Map<KeyType, ValueType> |
An example of using a MapProof
.
Exonum.verifyBlock(data, validators)
Each new block in Exonum blockchain is signed by validators. To prove the integrity and reliability of the block, it is necessary to verify their signatures. The signature of each validator are stored in the precommits.
The merkleProof
method is used to validate block and its precommits.
Returns true
if verification is succeeded or false
if it is failed.
Argument | Description | Type |
---|---|---|
data | Structure with block and precommits. | Object |
validators | An array of validators public keys as a hexadecimal strings. | Array |
An example of block verification.
const pair = Exonum.keyPair()
{
publicKey: "...", // 32-byte public key
secretKey: "..." // 64-byte secret key
}
Exonum.keyPair function generates a new random Ed25519 signing key pair using the TweetNaCl cryptographic library.
const rand = Exonum.randomUint64()
Exonum.randomUint64 function generates a new random Uint64
number of cryptographic quality using the
TweetNaCl cryptographic library.
const hex = '674718178bd97d3ac5953d0d8e5649ea373c4d98b3b61befd5699800eaa8513b'
Exonum.hexadecimalToUint8Array(hex) // [103, 71, 24, 23, 139, 217, 125, 58, 197, 149, 61, 13, 142, 86, 73, 234, 55, 60, 77, 152, 179, 182, 27, 239, 213, 105, 152, 0, 234, 168, 81, 59]
const hex = '674718178bd97d3ac5953d0d8e5649ea373c4d98b3b61befd5699800eaa8513b'
Exonum.hexadecimalToBinaryString(hex) // '0110011101000111000110000001011110001011110110010111110100111010110001011001010100111101000011011000111001010110010010011110101000110111001111000100110110011000101100111011011000011011111011111101010101101001100110000000000011101010101010000101000100111011'
const arr = new Uint8Array([103, 71, 24, 23, 139, 217, 125, 58, 197, 149, 61, 13, 142, 86, 73, 234, 55, 60, 77, 152, 179, 182, 27, 239, 213, 105, 152, 0, 234, 168, 81, 59])
Exonum.uint8ArrayToHexadecimal(arr) // '674718178bd97d3ac5953d0d8e5649ea373c4d98b3b61befd5699800eaa8513b'
const arr = new Uint8Array([103, 71, 24, 23, 139, 217, 125, 58, 197, 149, 61, 13, 142, 86, 73, 234, 55, 60, 77, 152, 179, 182, 27, 239, 213, 105, 152, 0, 234, 168, 81, 59])
Exonum.uint8ArrayToBinaryString(arr) // '0110011101000111000110000001011110001011110110010111110100111010110001011001010100111101000011011000111001010110010010011110101000110111001111000100110110011000101100111011011000011011111011111101010101101001100110000000000011101010101010000101000100111011'
const str = '0110011101000111000110000001011110001011110110010111110100111010110001011001010100111101000011011000111001010110010010011110101000110111001111000100110110011000101100111011011000011011111011111101010101101001100110000000000011101010101010000101000100111011'
Exonum.binaryStringToUint8Array(str) // [103, 71, 24, 23, 139, 217, 125, 58, 197, 149, 61, 13, 142, 86, 73, 234, 55, 60, 77, 152, 179, 182, 27, 239, 213, 105, 152, 0, 234, 168, 81, 59]
const str = '0110011101000111000110000001011110001011110110010111110100111010110001011001010100111101000011011000111001010110010010011110101000110111001111000100110110011000101100111011011000011011111011111101010101101001100110000000000011101010101010000101000100111011'
Exonum.binaryStringToHexadecimal(str) // '674718178bd97d3ac5953d0d8e5649ea373c4d98b3b61befd5699800eaa8513b'
const str = 'Hello world'
Exonum.stringToUint8Array(str) // [72, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100]
The contributing to the Exonum Client is based on the same principles and rules as the contributing to exonum-core.
The coding standards are described in the .eslintrc
file.
To help developers define and maintain consistent coding styles between different editors and IDEs
we used .editorconfig
configuration file.
All functions must include relevant unit tests. This applies to both of adding new features and fixing existed bugs.
Detailed changes for each release are documented in the CHANGELOG file.
Exonum Client is licensed under the Apache License (Version 2.0). See LICENSE for details.