This repository contains the code and resources for the TabXEval framework, a comprehensive evaluation framework for table extraction models. The framework provides tools for evaluating and comparing different table extraction approaches, with a focus on accuracy, robustness, and real-world applicability.
.
├── evaluation_pipeline/ # Core evaluation scripts and utilities
│ ├── eval.py # Main evaluation script
│ ├── eval_gemini.py # Gemini model evaluation
│ ├── eval_llama.py # LLaMA model evaluation
│ ├── fuzzy_table_matching.py # Fuzzy matching utilities
│ └── comparison_utils.py # Comparison utilities
├── tabxbench/ # Benchmark datasets and tools
├── EVALUATION_OF_MODELS/ # Evaluation results and analysis
└── TabXEval.pdf # Research paper
- Clone the repository:
git clone https://github.com/yourusername/tabxeval.git
cd tabxeval- Install dependencies:
pip install -r requirements.txt- Set up environment variables:
Create a
.envfile in the root directory with your API keys:
OPENAI_API_KEY=your_openai_api_key
To evaluate a model using the framework:
python evaluation_pipeline/eval.py \
--align_prompt path/to/align_prompt.txt \
--compare_prompt path/to/compare_prompt.txt \
--input_tables path/to/input_tables.json \
--output_path path/to/output/The framework supports evaluation of multiple models:
- GPT-4
- Gemini
- LLaMA
If you use this framework in your research, please cite our paper:
@misc{pancholi2025tabxevalbadtableexhaustive,
title={TabXEval: Why this is a Bad Table? An eXhaustive Rubric for Table Evaluation},
author={Vihang Pancholi and Jainit Bafna and Tejas Anvekar and Manish Shrivastava and Vivek Gupta},
year={2025},
eprint={2505.22176},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2505.22176},
}This project is licensed under the MIT License - see the LICENSE file for details.
Contributions are welcome! Please feel free to submit a Pull Request.