Skip to content

CoRAL-ASU/TabXEval

Repository files navigation

TabXEval: A Comprehensive Framework for Evaluating Table Extraction Models

This repository contains the code and resources for the TabXEval framework, a comprehensive evaluation framework for table extraction models. The framework provides tools for evaluating and comparing different table extraction approaches, with a focus on accuracy, robustness, and real-world applicability.

Repository Structure

.
├── evaluation_pipeline/     # Core evaluation scripts and utilities
│   ├── eval.py             # Main evaluation script
│   ├── eval_gemini.py      # Gemini model evaluation
│   ├── eval_llama.py       # LLaMA model evaluation
│   ├── fuzzy_table_matching.py  # Fuzzy matching utilities
│   └── comparison_utils.py # Comparison utilities
├── tabxbench/             # Benchmark datasets and tools
├── EVALUATION_OF_MODELS/  # Evaluation results and analysis
└── TabXEval.pdf          # Research paper

Setup

  1. Clone the repository:
git clone https://github.com/yourusername/tabxeval.git
cd tabxeval
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables: Create a .env file in the root directory with your API keys:
OPENAI_API_KEY=your_openai_api_key

Usage

Running Evaluations

To evaluate a model using the framework:

python evaluation_pipeline/eval.py \
    --align_prompt path/to/align_prompt.txt \
    --compare_prompt path/to/compare_prompt.txt \
    --input_tables path/to/input_tables.json \
    --output_path path/to/output/

Available Models

The framework supports evaluation of multiple models:

  • GPT-4
  • Gemini
  • LLaMA

Citation

If you use this framework in your research, please cite our paper:

@misc{pancholi2025tabxevalbadtableexhaustive,
      title={TabXEval: Why this is a Bad Table? An eXhaustive Rubric for Table Evaluation}, 
      author={Vihang Pancholi and Jainit Bafna and Tejas Anvekar and Manish Shrivastava and Vivek Gupta},
      year={2025},
      eprint={2505.22176},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.22176}, 
}

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •