A Python library for estimating the embedding dimension of time series based on symbolic dynamics, entropy rate (via Lempel-Ziv complexity), and predictability (Pi_max).
git clone https://github.com/CoMuNeLab/embedding-dim.git
cd embedding-dim
pip install .python -m scripts.run_dimension <input_csv> <output_prefix> <points> <tau_min> <tau_max> <max_m> [--scale SCALE]python -m scripts.run_dimension data/lorenz_x.csv output 1000 1 3 10 --scale 1.0embedding-dim <input_csv> <output_prefix> <points> <tau_min> <tau_max> <max_m> [--scale SCALE]embedding-dim ../data/lorenz_x.csv output 1000 1 3 10| Argument | Description |
|---|---|
input_csv |
Path to a CSV file with 1D time series |
output_prefix |
Prefix for output CSV and image files |
points |
Number of data points to use |
tau_min |
Minimum delay value Ο |
tau_max |
Maximum delay value Ο |
max_m |
Maximum embedding dimension |
--scale |
(Optional) Symbolization grid scale |
βββ data
βΒ Β βββ lorenz_x.csv
βββ pyproject.toml
βββ README.md
βββ scripts
βΒ Β βββ run_dimension.py
βββ src
βββ embedding_dim
βββ dimension.py
βββ entropy_rate.py
βββ __init__.py
βββ pi_max.py
βββ substring.py
βββ symbolization.py
- V. d'Andrea et al., Symbolic dynamics for dimensionality estimation
- Tria et al., Predictability of human mobility, Nature (2012)