Skip to content

Analyze time series complexity using symbolic dynamics, entropy rates, redundancy, and predictability across time-delay embeddings.

Notifications You must be signed in to change notification settings

CoMuNeLab/embedding-dim

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

embedding-dim

A Python library for estimating the embedding dimension of time series based on symbolic dynamics, entropy rate (via Lempel-Ziv complexity), and predictability (Pi_max).

Installation

git clone https://github.com/CoMuNeLab/embedding-dim.git
cd embedding-dim
pip install .

Usage

Option 1: via Python module

python -m scripts.run_dimension <input_csv> <output_prefix> <points> <tau_min> <tau_max> <max_m> [--scale SCALE]

Example:

python -m scripts.run_dimension data/lorenz_x.csv output 1000 1 3 10 --scale 1.0

Option 2: CLI alias (after installing with entry point)

embedding-dim <input_csv> <output_prefix> <points> <tau_min> <tau_max> <max_m> [--scale SCALE]

Example:

embedding-dim ../data/lorenz_x.csv output 1000 1 3 10

Arguments

Argument Description
input_csv Path to a CSV file with 1D time series
output_prefix Prefix for output CSV and image files
points Number of data points to use
tau_min Minimum delay value Ο„
tau_max Maximum delay value Ο„
max_m Maximum embedding dimension
--scale (Optional) Symbolization grid scale

Project Structure

β”œβ”€β”€ data
β”‚Β Β  └── lorenz_x.csv
β”œβ”€β”€ pyproject.toml
β”œβ”€β”€ README.md
β”œβ”€β”€ scripts
β”‚Β Β  └── run_dimension.py
└── src
    └── embedding_dim
        β”œβ”€β”€ dimension.py
        β”œβ”€β”€ entropy_rate.py
        β”œβ”€β”€ __init__.py
        β”œβ”€β”€ pi_max.py
        β”œβ”€β”€ substring.py
        └── symbolization.py

References

  • V. d'Andrea et al., Symbolic dynamics for dimensionality estimation
  • Tria et al., Predictability of human mobility, Nature (2012)

About

Analyze time series complexity using symbolic dynamics, entropy rates, redundancy, and predictability across time-delay embeddings.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages