A Streamlit App for Predicting Diabetes Risk in Patients
A project designed for Predicting Diabetes Risk in Patients Using Streamlit App.!
Explore the Docs »
Use The App
·
Report Bug
·
Request Feature
Click to View Table of Contents
Welcome
to the Dibetes Prediction App repository! This is a Streamlit application designed to predict the likelihood of diabetes in patients. The app uses various health metrics to provide an estimate of diabetes risk.
Python
Pandas
NumPy
Streamlit
User-Friendly Interface:
Easy to navigate and input data.Real-Time Predictions:
Get instant predictions based on the input data.The dataset:
used for this project includes various health indicators such as
- Number of Pregnancies (min_value=0, max_value=20)
- Glucose Level (min_value=0, max_value=200)
- Blood Pressure (mm Hg) (min_value=0, max_value=122)
- Skin Thickness (mm) (min_value=0, max_value=100)
- Insulin Level (mu U/ml) (min_value=0, max_value=846)
- Body Mass Index (BMI) (min_value=0.0, max_value=100.0)
- Diabetes Pedigree Function (min_value=0.0, max_value=2.5)
- Age (min_value=0, max_value=120)
- Predicts the likelihood of diabetes in patients
- Open the app in your browser.
- Enter the required health metrics (e.g., age, BMI, blood pressure).
- Click on the “Predict” button to get the diabetes risk prediction.
- View the result.
Ensure you have Python installed and then run:
- requirement
pip install -r requirements.txt
- Clone the repo:
git clone https://github.com/ClassicCollins/diabetes-prediction-app.git
cd diabetes-prediction-app.git
- Creat Virtual Enviroment:
python -m venv env source env/bin/activate # On Windows use `env\Scripts\activate`
- Install required packages:
pip install -r requirements.txt
- Run the Streamlite App:
streamlit run app_diabetes.py
MIT
License applies.
Collins Emezie Ugwuozor - @twitter_handle - ugwuozorcollinsemezie@gmail.com
Project Link: Diabetes-Prediction-App
Don't forget to give the project a star! Thanks again!