Skip to content

ClassicCollins/diabetes-prediction-app

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diabetes Prediction App

A Streamlit App for Predicting Diabetes Risk in Patients

MIT License LinkedIn Twitter


Diabetes Prediction App

A project designed for Predicting Diabetes Risk in Patients Using Streamlit App.!
Explore the Docs »

Use The App · Report Bug · Request Feature

Click to View Table of Contents
  1. Overview
  2. Usage
  3. License
  4. Contact
  5. Acknowledgments

Overview

Product Name Screen Shot

  • Welcome to the Dibetes Prediction App repository! This is a Streamlit application designed to predict the likelihood of diabetes in patients. The app uses various health metrics to provide an estimate of diabetes risk.

(back to top)

Tools and Libraries

  • Python
  • Pandas
  • NumPy
  • Streamlit

(back to top)

Features

  • User-Friendly Interface: Easy to navigate and input data.
  • Real-Time Predictions: Get instant predictions based on the input data.
  • The dataset: used for this project includes various health indicators such as
  • Number of Pregnancies (min_value=0, max_value=20)
  • Glucose Level (min_value=0, max_value=200)
  • Blood Pressure (mm Hg) (min_value=0, max_value=122)
  • Skin Thickness (mm) (min_value=0, max_value=100)
  • Insulin Level (mu U/ml) (min_value=0, max_value=846)
  • Body Mass Index (BMI) (min_value=0.0, max_value=100.0)
  • Diabetes Pedigree Function (min_value=0.0, max_value=2.5)
  • Age (min_value=0, max_value=120)

(back to top)

Results

  • Predicts the likelihood of diabetes in patients

(back to top)

Usage

  • Open the app in your browser.
  • Enter the required health metrics (e.g., age, BMI, blood pressure).
  • Click on the “Predict” button to get the diabetes risk prediction.
  • View the result.

Required Packages

Ensure you have Python installed and then run:

  • requirement
    pip install -r requirements.txt

Installation Steps

  1. Clone the repo:
    git clone https://github.com/ClassicCollins/diabetes-prediction-app.git
    cd diabetes-prediction-app.git
  2. Creat Virtual Enviroment:
    python -m venv env
    source env/bin/activate  # On Windows use `env\Scripts\activate`
  3. Install required packages:
    pip install -r requirements.txt
  4. Run the Streamlite App:
    streamlit run app_diabetes.py

(back to top)

License

  • MIT License applies.

(back to top)

Contact

Collins Emezie Ugwuozor - @twitter_handle - ugwuozorcollinsemezie@gmail.com

Project Link: Diabetes-Prediction-App

Don't forget to give the project a star! Thanks again!

(back to top)

Acknowledgments

(back to top)

About

A Streamlit App for Predicting Diabetes Risk in Patients

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages