EnterpriseHub is an AI-powered real estate platform that transforms lead management and business intelligence for real estate professionals and agencies. By automating lead qualification, follow-up scheduling, and CRM synchronization, EnterpriseHub eliminates the 40% lead loss caused by slow response times.
Key Benefits:
- Instant Lead Qualification: Three specialized AI bots (Lead, Buyer, Seller) qualify prospects in real-time using a proven Q0-Q4 framework, enforcing the critical 5-minute response SLA
- Unified Operations: Consolidate qualification results, CRM updates, and analytics into one platform—replacing fragmented spreadsheets and disconnected dashboards
- Actionable Insights: Streamlit BI dashboards provide real-time visibility into lead flow, conversion rates, commission tracking, and bot performance metrics
Target Audience: Real estate teams, brokerages, and agencies seeking to scale operations while maintaining personalized client engagement.
Business Impact: Production-ready with 89% token cost reduction, 87% cache hit rate, and P95 latency under 2 seconds. The platform integrates seamlessly with GoHighLevel CRM and supports multi-LLM orchestration (Claude, Gemini, Perplexity).
Quick Start: Launch the demo in seconds with make demo—no API keys or database required. For full deployment, complete setup in under 10 minutes using Docker Compose.
Real estate teams lose 40% of leads because response time exceeds the 5-minute SLA. This platform automates lead qualification, follow-up scheduling, and CRM sync so no lead goes cold.
- Slow lead response -- Three AI bots (Lead, Buyer, Seller) qualify prospects in real time using a Q0-Q4 framework, enforcing the 5-minute response rule
- Disconnected tools -- Qualification results, CRM updates, and analytics live in one platform instead of spreadsheets + separate dashboards
- No visibility into pipeline health -- Streamlit BI dashboard surfaces lead flow, conversion rates, commission tracking, and bot performance metrics
- Service 4: Multi-Agent Workflows (Agentic AI Systems)
- Service 6: AI-Powered Personal and Business Automation
- Service 8: Interactive Business Intelligence Dashboards
- Service 10: Predictive Analytics and Lead Scoring
- IBM Generative AI Engineering with PyTorch, LangChain & Hugging Face
- IBM RAG and Agentic AI Professional Certificate
- Duke University LLMOps Specialization
- Google Data Analytics Certificate
- IBM Business Intelligence Analyst Professional Certificate
graph TB
subgraph Clients["Client Layer"]
LB["Lead Bot :8001"]
SB["Seller Bot :8002"]
BB["Buyer Bot :8003"]
BI["Streamlit BI Dashboard :8501"]
end
subgraph Core["FastAPI Core — Orchestration Layer"]
CO["Claude Orchestrator<br/><small>Multi-strategy parsing, L1/L2/L3 cache</small>"]
AMC["Agent Mesh Coordinator<br/><small>22 agents, capability routing, audit trails</small>"]
HO["Handoff Service<br/><small>0.7 confidence, circular prevention</small>"]
end
subgraph CRM["CRM Integration"]
GHL["GoHighLevel<br/><small>Webhooks, Contact Sync, Workflows</small>"]
HS["HubSpot Adapter"]
SF["Salesforce Adapter"]
end
subgraph AI["AI Services"]
CL["Claude<br/><small>Primary LLM</small>"]
GM["Gemini<br/><small>Analysis</small>"]
PP["Perplexity<br/><small>Research</small>"]
OR["OpenRouter<br/><small>Fallback</small>"]
end
subgraph RAG["Advanced RAG System"]
BM25["BM25 Sparse Search"]
DE["Dense Embeddings"]
RRF["Reciprocal Rank Fusion"]
VS["ChromaDB Vector Store"]
end
subgraph Data["Data Layer"]
PG[("PostgreSQL<br/><small>Leads, Properties, Analytics</small>")]
RD[("Redis<br/><small>L2 Cache, Sessions, Rate Limiting</small>")]
end
LB & SB & BB -->|"Qualification<br/>Requests"| Core
BI -->|"Analytics<br/>Queries"| Core
Core -->|"CRM Sync"| CRM
CO -->|"LLM Calls"| AI
CO -->|"Retrieval"| RAG
Core -->|"Read/Write"| Data
RAG --> VS
HO -->|"Bot Transfer"| Clients
| Metric | Value |
|---|---|
| Test Suite | 4,500+ automated tests |
| LLM Cost Reduction | 89% via 3-tier Redis caching |
| Orchestration Overhead | <200ms per request |
| API P95 Latency | <300ms under 10 req/sec |
| Cache Hit Rate | >85% for repeated queries |
| CRM Integrations | 3 (GoHighLevel, HubSpot, Salesforce) |
| Bot Handoff Accuracy | 0.7 confidence threshold |
git clone https://github.com/ChunkyTortoise/EnterpriseHub.git
cd EnterpriseHub
pip install -r requirements.txt
# Demo mode — no API keys, no database, pre-populated dashboards
make democp .env.example .env
# Edit .env with your API keys
docker-compose up -d postgres redis
uvicorn app:app --reload --port 8000
# BI Dashboard (separate terminal)
streamlit run admin_dashboard.py --server.port 8501| Layer | Technology |
|---|---|
| API | FastAPI (async), Pydantic validation |
| UI | Streamlit, Plotly |
| Database | PostgreSQL, Alembic migrations |
| Cache | Redis (L1), Application memory (L2), Database (L3) |
| AI/ML | Claude (primary), Gemini (analysis), OpenRouter (fallback) |
| CRM | GoHighLevel (webhooks, contacts, workflows) |
| Search | ChromaDB vector store, BM25, hybrid retrieval |
| Payments | Stripe (subscriptions, webhooks) |
| Infrastructure | Docker Compose |
EnterpriseHub/
├── ghl_real_estate_ai/ # Main application
│ ├── agents/ # Bot implementations (Lead, Buyer, Seller)
│ ├── api/routes/ # FastAPI endpoints
│ ├── services/ # Business logic layer
│ │ ├── claude_orchestrator.py # Multi-LLM coordination + caching
│ │ ├── agent_mesh_coordinator.py # Agent fleet management
│ │ ├── llm_observability.py # LLM cost tracking + tracing
│ │ ├── enhanced_ghl_client.py # CRM integration (rate-limited)
│ │ └── jorge/ # Bot services (handoff, A/B, metrics)
│ ├── models/ # SQLAlchemy models, Pydantic schemas
│ └── streamlit_demo/ # Dashboard UI components
├── advanced_rag_system/ # RAG pipeline (BM25, dense search, ChromaDB)
├── benchmarks/ # Synthetic performance benchmarks
├── docs/ # Documentation
│ ├── adr/ # Architecture Decision Records
│ └── templates/ # Reusable templates for other repos
├── tests/ # 4,500+ automated tests
├── app.py # FastAPI entry point
├── admin_dashboard.py # Streamlit BI dashboard
└── docker-compose.yml # Container orchestration
Production-ready bot services with enhanced monitoring and A/B testing:
| Service | Status | Features |
|---|---|---|
| JorgeHandoffService | ✅ Production | Circular prevention, rate limiting, pattern learning |
| ABTestingService | ✅ Production | Deterministic assignment, z-test significance |
| PerformanceTracker | ✅ Production | P50/P95/P99 latency, SLA compliance |
| AlertingService | ✅ Production | 7 default rules, email/Slack/webhook |
| BotMetricsCollector | ✅ Production | Per-bot stats, cache hits, alerting |
Production-ready infrastructure with observability built in:
┌──────────────────────────────────────────────────────────┐
│ Docker Compose Profiles │
│ ├── postgres (primary DB + Alembic migrations) │
│ ├── redis (L2 cache, sessions, rate limiting) │
│ ├── api (FastAPI, 91+ routes) │
│ ├── bots (Lead :8001, Seller :8002, Buyer :8003) │
│ └── dashboard (Streamlit BI :8501) │
└──────────────────────────────────────────────────────────┘
| Capability | Implementation | Key Metric |
|---|---|---|
| Token Cost Optimization | 3-tier cache (L1 memory, L2 Redis, L3 PostgreSQL) + model routing | 93K → 7.8K tokens/workflow (89% reduction) |
| Latency Monitoring | PerformanceTracker — P50/P95/P99 percentiles, SLA compliance |
Lead Bot P95 < 2,000ms |
| Alerting | AlertingService — 7 default rules, configurable cooldowns |
Error rate, latency, cache, handoff, tokens |
| Per-Bot Metrics | BotMetricsCollector — throughput, cache hits, error categorization |
87% cache hit rate |
| Health Checks | /health/aggregate endpoint checks all services |
Bot + DB + Redis + CRM status |
| ADR | Title | Status |
|---|---|---|
| ADR-0001 | Three-Tier Redis Caching Strategy | Accepted |
| ADR-0002 | Multi-CRM Protocol Pattern | Accepted |
| ADR-0003 | Jorge Handoff Architecture | Accepted |
| ADR-0004 | Agent Mesh Coordinator | Accepted |
| ADR-0005 | Pydantic V2 Migration | Accepted |
Synthetic benchmarks measuring platform overhead (no external API keys required).
python -m benchmarks.run_allSee BENCHMARKS.md for full methodology and results.
Full LLM observability stack: cost tracking, latency histograms, conversation analytics, and alerting.
See docs/OBSERVABILITY.md for details.
python -m pytest tests/ -v
python -m pytest --cov=ghl_real_estate_ai --cov-report=term-missingSee CHANGELOG.md for release history.
- jorge_real_estate_bots -- Standalone 3-bot lead qualification system extracted from this platform
- ai-orchestrator -- AgentForge: unified async LLM interface (Claude, Gemini, OpenAI, Perplexity)
- Revenue-Sprint -- AI-powered freelance pipeline: job scanning, proposal generation, prompt injection testing
- insight-engine -- Upload CSV/Excel, get instant dashboards, predictive models, and reports
- docqa-engine -- RAG document Q&A with hybrid retrieval and prompt engineering lab
- scrape-and-serve -- Web scraping, price monitoring, Excel-to-web apps, and SEO tools
- Portfolio -- Project showcase and services
MIT -- see LICENSE for details.




