Skip to content

Chohoonhee/SCSNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Selection and Cross Similarity for Event-Image Deep Stereo (SCSNet) ECCV 2022

This code is an official code of our ECCV paper "Selection and Cross Similarity for Event-Image Deep Stereo"

Dataset

DSEC https://dsec.ifi.uzh.ch/uzh/disparity-benchmark/

Train

python main.py --n_GPUs 4 --batch_size 8 --dataset indoor_flying_1 --split 1 --data_root ../../DSEC_data --save_dir max_disp_120_homo_batch_8 --model pertu_select_recon --loss 1L1+1LPIPS --lr 1e-4 --test_every 200 --save_every 1 --disp_model gwc_pertu_noise_with_affinity --end_epoch 160 --validate_every 10

Inference for benchmark

CUDA_VISIBLE_DEVICES=3 python main.py --n_GPUs 1 --batch_size 1 --split 1 --data_root ../../DSEC_data --save_dir max_disp_120_homo_batch_8 --model pertu_select_recon --loss 1L1+1LPIPS --lr 1e-4 --test_every 100 --save_every 1 --disp_model gwc_pertu_noise_with_affinity --end_epoch 99 --validate_every 1 --load_epoch 77

Paper Reference

@inproceedings{cho2022selection, title={Selection and Cross Similarity for Event-Image Deep Stereo}, author={Cho, Hoonhee and Yoon, Kuk-Jin}, booktitle={Computer Vision--ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23--27, 2022, Proceedings, Part XXXII}, pages={470--486}, year={2022}, organization={Springer} }

we borrow the works from three repositories. Thanks for the excellent codes!

TBD

  • Pretrained model
  • MVSEC dataloader
  • There may be minor code errors due to accidental deletion of parts. But, performance was confirmed to be reproducible.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages