The official code repository for our TPAMI paper 'Deep Point Set Resampling via Gradient Fields'.
You can install via conda environment .yaml file
conda env create -f environment.yml
conda activate deeprs
to release soon
To train or test your model, you should first edit the corresponding config file according to the comments (fill in the file directory). Then, you can simply run
## Train a network for denoising
python -m scripts.train_denoise --config ./configs/denoise.yml
## Train a network for upsampling
python -m scripts.train_upsample --config ./configs/ups.yml
for training, and run
## Save your denoising results
python -m scripts.save_denoised --config ./configs/denoise.yml [--ckpt]
## Save your upsampling results
python -m scripts.train_upsample --config ./configs/ups.yml [--ckpt_model] [--ckpt_gen]
for testing.
You can run
python -m scripts.evaluate --config ./configs/denoise.yml
python -m scripts.evaluate_upsample --config ./configs/ups.yml
to evaluate your results
If you feel this work helpful, please cite
@ARTICLE{9775211,
author={Chen, Haolan and Du, Bi'an and Luo, Shitong and Hu, Wei},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Deep Point Set Resampling via Gradient Fields},
year={2022},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2022.3175183}}
and contact chenhl99@pku.edu.cn for any question.