Skip to content

Implementation and experiments of graph embedding algorithms.

License

Notifications You must be signed in to change notification settings

ChenS676/GraphEmbedding

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GraphEmbedding

GitHub Issues CI status codecov Codacy Badge Disscussion

Method

Model Paper Note
DeepWalk [KDD 2014]DeepWalk: Online Learning of Social Representations 【Graph Embedding】DeepWalk:算法原理,实现和应用
LINE [WWW 2015]LINE: Large-scale Information Network Embedding 【Graph Embedding】LINE:算法原理,实现和应用
Node2Vec [KDD 2016]node2vec: Scalable Feature Learning for Networks 【Graph Embedding】Node2Vec:算法原理,实现和应用
SDNE [KDD 2016]Structural Deep Network Embedding 【Graph Embedding】SDNE:算法原理,实现和应用
Struc2Vec [KDD 2017]struc2vec: Learning Node Representations from Structural Identity 【Graph Embedding】Struc2Vec:算法原理,实现和应用

How to run examples

  1. clone the repo and make sure you have installed tensorflow or tensorflow-gpu on your local machine.
  2. run following commands
python setup.py install
cd examples
python deepwalk_wiki.py

DisscussionGroup & Related Projects

公众号:浅梦学习笔记

微信:deepctrbot

Usage

The design and implementation follows simple principles(graph in,embedding out) as much as possible.

Input format

we use networkxto create graphs.The input of networkx graph is as follows: node1 node2 <edge_weight>

DeepWalk

G = nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])# Read graph

model = DeepWalk(G,walk_length=10,num_walks=80,workers=1)#init model
model.train(window_size=5,iter=3)# train model
embeddings = model.get_embeddings()# get embedding vectors

LINE

G = nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])#read graph

model = LINE(G,embedding_size=128,order='second') #init model,order can be ['first','second','all']
model.train(batch_size=1024,epochs=50,verbose=2)# train model
embeddings = model.get_embeddings()# get embedding vectors

Node2Vec

G=nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',
                        create_using = nx.DiGraph(), nodetype = None, data = [('weight', int)])#read graph

model = Node2Vec(G, walk_length = 10, num_walks = 80,p = 0.25, q = 4, workers = 1)#init model
model.train(window_size = 5, iter = 3)# train model
embeddings = model.get_embeddings()# get embedding vectors

SDNE

G = nx.read_edgelist('../data/wiki/Wiki_edgelist.txt',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])#read graph

model = SDNE(G,hidden_size=[256,128]) #init model
model.train(batch_size=3000,epochs=40,verbose=2)# train model
embeddings = model.get_embeddings()# get embedding vectors

Struc2Vec

G = nx.read_edgelist('../data/flight/brazil-airports.edgelist',create_using=nx.DiGraph(),nodetype=None,data=[('weight',int)])#read graph

model = Struc2Vec(G, 10, 80, workers=4, verbose=40, ) #init model
model.train(window_size = 5, iter = 3)# train model
embeddings = model.get_embeddings()# get embedding vectors

About

Implementation and experiments of graph embedding algorithms.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%