Skip to content

Commit

Permalink
Merge pull request hiyouga#1252 from anvie/neftune
Browse files Browse the repository at this point in the history
add NEFTune optimization
  • Loading branch information
hiyouga authored Oct 22, 2023
2 parents 8fdff07 + 57fb40a commit b42a145
Show file tree
Hide file tree
Showing 5 changed files with 88 additions and 1 deletion.
2 changes: 2 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846

## Changelog

[23/10/21] We supported [NEFTune](https://arxiv.org/abs/2310.05914) optimization . Try `--neftune_noise_alpha` argument to activate NEFTune, e.g., `--neftune_noise_alpha 5`.

[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.

[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
Expand Down
2 changes: 2 additions & 0 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846

## 更新日志

[23/10/21] 我们支持了 [NEFTune](https://arxiv.org/abs/2310.05914) 优化。试试`--neftune_noise_alpha` 参数来激活 NEFTune,例如,`--neftune_noise_alpha 5`

[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。

[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)
Expand Down
4 changes: 4 additions & 0 deletions src/llmtuner/hparams/finetuning_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,10 @@ class FinetuningArguments:
default=0.1,
metadata={"help": "The beta parameter for the DPO loss."}
)
neftune_noise_alpha: Optional[float] = field(
default=None,
metadata={"help": "The alpha parameter for the NEFTune noise. By setting this the NEFTune optimization will be activated."}
)

def __post_init__(self):
if isinstance(self.lora_target, str): # support custom target modules/layers of LoRA
Expand Down
80 changes: 79 additions & 1 deletion src/llmtuner/tuner/sft/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,10 @@
import torch
import numpy as np
import torch.nn as nn
from functools import wraps
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
from transformers import Seq2SeqTrainer
from transformers import Seq2SeqTrainer, PreTrainedModel, Trainer
from peft import PeftModel

from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.logging import get_logger
Expand All @@ -21,6 +23,14 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
Inherits PeftTrainer to compute generative metrics such as BLEU and ROUGE.
"""

def __init__(self, model: Union["PreTrainedModel", nn.Module] = None, neftune_noise_alpha: Optional[float] = 0, **kwargs):
super().__init__(model, **kwargs)
self.neftune_noise_alpha = neftune_noise_alpha
self._neftune_activated = False

if self.neftune_noise_alpha:
self._activate_neftune(model)

def prediction_step(
self,
model: nn.Module,
Expand Down Expand Up @@ -99,3 +109,71 @@ def save_predictions(
for pred, label in zip(decoded_preds, decoded_labels):
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
writer.write("\n".join(res))


@wraps(Trainer.train)
def train(self, *args, **kwargs):
output = super().train(*args, **kwargs)

# After training we make sure to retrieve back the original forward pass method
# for the embedding layer.
if self.neftune_noise_alpha is not None:
self._deactivate_neftune(self.model)

return output

def _toggle_neftune(self, model, activate=True):
"""Toggle NEFTune optimization for a model (i.e. activate or deactivate).
This optimization based on this paper: https://arxiv.org/abs/2310.05914
Parameters:
model : PreTrainedModel or PeftModel
The model to toggle the noise for.
activate : bool, optional (default=True)
Whether to activate the noise or not.
"""
if activate == self._neftune_activated:
return

self._neftune_activated = activate

embeddings = (model.get_input_embeddings() if isinstance(model, PreTrainedModel)
else model.base_model.get_input_embeddings() if isinstance(model, PeftModel)
else None)

if embeddings:
if activate:
embeddings.neftune_noise_alpha = self.neftune_noise_alpha
embeddings._trl_old_forward = embeddings.forward
neftune_method = _neftune_forward_function.__get__(embeddings, embeddings.__class__)
setattr(embeddings, "forward", neftune_method)
logger.info("NEFTune activated with alpha: ", self.neftune_noise_alpha)
elif hasattr(embeddings, "_trl_old_forward"):
embeddings.forward = embeddings._trl_old_forward
del embeddings._trl_old_forward
del embeddings.neftune_noise_alpha
logger.info("NEFTune deactivated")

_activate_neftune = lambda self, model: self._toggle_neftune(model, activate=True)
_deactivate_neftune = lambda self, model: self._toggle_neftune(model, activate=False)


def _neftune_forward_function(self, input: torch.Tensor) -> torch.Tensor:
"""
This code is adapted from the original source code that can be found here: https://github.com/neelsjain/NEFTune
"""
embeddings = torch.nn.functional.embedding(
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse)

if self.training:
dims = torch.tensor(embeddings.size(1) * embeddings.size(2))
mag_norm = self.neftune_noise_alpha / torch.sqrt(dims)
embeddings += torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm)

return embeddings
1 change: 1 addition & 0 deletions src/llmtuner/tuner/sft/workflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ def run_sft(
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
neftune_noise_alpha=finetuning_args.neftune_noise_alpha,
**split_dataset(dataset, data_args, training_args)
)

Expand Down

0 comments on commit b42a145

Please sign in to comment.