forked from tensorflow/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
141 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
# Module prvi/tf2nq/1 | ||
Question Answering model for Kaggle TensorFlow 2.0 Question Answering challenge [1]. | ||
|
||
<!-- asset-path: https://hpz400.cs.elte.hu/model/model.tar.gz --> | ||
<!-- module-type: text-question-answering --> | ||
<!-- network-architecture: Transformer --> | ||
<!-- dataset: Natural Questions --> | ||
<!-- language: en --> | ||
<!-- fine-tunable: true --> | ||
<!-- format: saved_model_2 --> | ||
|
||
## Overview | ||
|
||
This a finetuned BERT large model with a special head, where the core model was pretrained with whole word masking. | ||
|
||
The input to this model is a tokenized text that start with a question and | ||
continues with part of a wikipedia page. | ||
The aim is to find the answer to the question within the wikipedia page. The input an the | ||
output format are somewhat different from the BERT joint baseline. More details can be found | ||
in the short description of this solution [2] and in the pre and post process code [3]. | ||
|
||
#### Example use | ||
|
||
The model can be loaded with | ||
``` | ||
import tensorflow_hub as hub | ||
model = hub.load("https://tfhub.dev/prvi/tf2nq/1") | ||
``` | ||
|
||
Since this model not only outputs the start and end logits of short spans, but a logit for each possible short spans postprocessing is required. E.g. to keep the 100 most promising candidates one can define | ||
``` | ||
def output(unique_id,model_output,n_keep=100): | ||
pos_logits,ans_logits,long_mask,short_mask,cross = model_output | ||
long_span_logits = pos_logits | ||
mask = tf.cast(tf.expand_dims(long_mask,-1),long_span_logits.dtype) | ||
long_span_logits = long_span_logits-10000*mask | ||
long_p = tf.nn.softmax(long_span_logits,axis=1) | ||
short_span_logits = pos_logits | ||
short_span_logits -= 10000*tf.cast(tf.expand_dims(short_mask,-1),short_span_logits.dtype) | ||
start_logits,end_logits = short_span_logits[:,:,0],short_span_logits[:,:,1] | ||
batch_size,seq_length = short_span_logits.shape[0],short_span_logits.shape[1] | ||
seq = tf.range(seq_length) | ||
i_leq_j_mask = tf.cast(tf.expand_dims(seq,1)>tf.expand_dims(seq,0),short_span_logits.dtype) | ||
i_leq_j_mask = tf.expand_dims(i_leq_j_mask,0) | ||
logits = tf.expand_dims(start_logits,2)+tf.expand_dims(end_logits,1)+cross | ||
logits -= 10000*i_leq_j_mask | ||
logits = tf.reshape(logits, [batch_size,seq_length*seq_length]) | ||
short_p = tf.nn.softmax(logits) | ||
indices = tf.argsort(short_p,axis=1,direction='DESCENDING')[:,:n_keep] | ||
short_p = tf.gather(short_p,indices,batch_dims=1) | ||
return dict(unique_id = unique_id, | ||
ans_logits= ans_logits, | ||
long_p = long_p, | ||
short_p = short_p, | ||
short_p_indices = indices) | ||
``` | ||
and apply it to the model output. | ||
|
||
E.g. for a minibatch `b` that has the fields `unique_id`,`token_ids`,`data_len`, and `question_len` one can use | ||
|
||
``` | ||
## b is a minibatch | ||
unique_id = b.pop('unique_id').numpy() | ||
b = [b['data_len'],b['input_ids'],b['question_len']] | ||
out_dict = output(unique_id,model(b,training=False)) | ||
for k,v in out_dict.items(): | ||
if isinstance(v,tf.Tensor): | ||
out_dict[k] = v.numpy() | ||
out_dict | ||
``` | ||
Then `out_dict` contains the `unique_id`, the answer type logits, the long span probabilities, the short spans with the highest probabilities and their indices. | ||
|
||
|
||
It can also be used within Keras: | ||
``` | ||
hub_layer = hub.KerasLayer("https://tfhub.dev/kaggle/tf2nq/1") | ||
def post_process(model_output,n_keep=100): | ||
pos_logits,ans_logits,long_mask,short_mask,cross = model_output | ||
long_span_logits = pos_logits | ||
mask = tf.cast(tf.expand_dims(long_mask,-1),long_span_logits.dtype) | ||
long_span_logits = long_span_logits-10000*mask | ||
long_p = tf.nn.softmax(long_span_logits,axis=1) | ||
short_span_logits = pos_logits | ||
short_span_logits -= 10000*tf.cast(tf.expand_dims(short_mask,-1),short_span_logits.dtype) | ||
start_logits,end_logits = short_span_logits[:,:,0],short_span_logits[:,:,1] | ||
batch_size,seq_length = short_span_logits.shape[0],short_span_logits.shape[1] | ||
seq = tf.range(seq_length) | ||
i_leq_j_mask = tf.cast(tf.expand_dims(seq,1)>tf.expand_dims(seq,0),short_span_logits.dtype) | ||
i_leq_j_mask = tf.expand_dims(i_leq_j_mask,0) | ||
logits = tf.expand_dims(start_logits,2)+tf.expand_dims(end_logits,1)+cross | ||
logits -= 10000*i_leq_j_mask | ||
logits = tf.reshape(logits, [-1,seq_length*seq_length]) | ||
short_p = tf.nn.softmax(logits) | ||
indices = tf.argsort(short_p,axis=1,direction='DESCENDING')[:,:n_keep] | ||
short_p = tf.gather(short_p,indices,batch_dims=1) | ||
return dict(ans_logits= ans_logits, | ||
long_p = long_p, | ||
short_p = short_p, | ||
short_p_indices = indices) | ||
token_ids = tf.keras.Input(shape=[512],dtype=tf.int32) | ||
data_len = tf.keras.Input(shape=[],dtype=tf.int32) | ||
question_len = tf.keras.Input(shape=[],dtype=tf.int32) | ||
pos_logits,ans_logits,long_mask,short_mask,cross = layer([data_len,token_ids,question_len]) | ||
output = post_process([pos_logits,ans_logits,long_mask,short_mask,cross]) | ||
keras_model = tf.keras.Model(inputs = dict(token_ids=token_ids, | ||
question_len=question_len, | ||
data_len=data_len), | ||
outputs = output) | ||
keras_model.summary() | ||
``` | ||
|
||
For further example of usage see the inference kernel on Kaggle [4] | ||
|
||
#### References | ||
|
||
[1] https://www.kaggle.com/c/tensorflow2-question-answering | ||
|
||
[2] https://www.kaggle.com/c/tensorflow2-question-answering/discussion/127521 | ||
|
||
[3] https://www.kaggle.com/prokaj/bert-baseline-pre-and-post-process | ||
|
||
[4] https://www.kaggle.com/prokaj/fork-of-baseline-html-tokens-v5 |