The official source code for the SPARSECAPS model, based on the original Capsules model by Sabour et al., used in the following paper:
- "Sparse Unsupervised Capsules Generalize Better" by David Rawlinson, Abdelrahman Ahmed and Gideon Kowadlo.
- GPU
- NumPy
- TensorFlow 1.5+
- See REQUIREMENTS.txt for additional dependencies
The checkpoint of the model trained on the expanded MNIST for affNIST generalizability is publicly available to skip the training step and easily reproduce the experimental results.
Scripts to build necessary the data for training and/or evaluating the model
can be found in the input_data
directory, for each dataset.
To generate the shifted MNIST training set for training the model:
python mnist_shift.py --data_dir=PATH_TO_MNIST_DIRECTORY \
--split=train --shift=2 --pad=0
To generate the expanded MNIST training set for affNIST generalizability:
python mnist_shift.py --data_dir=PATH_TO_MNIST_DIRECTORY \
--split=train --shift=6 --pad=6
The test set can be generated in a similar way by using the following flags
instead: --split=test --shift=0
. The dataset can also be downloaded from the
source by passing the --download=true
flag.
To generate the affNIST test set:
python affnist_shift.py --data_dir=PATH_TO_AFFNIST_DIRECTORY \
--split=test --shift=0 --pad=0
To generate the sharded affNIST test set to chunk the dataset over
separate TFRecords
files:
python affnist_shift.py --data_dir=PATH_TO_AFFNIST_DIRECTORY \
--split=test --shift=0 --pad=0 --max_shard=80000
The max_shard
is the maximum number of images in a single TFRecords
file,
and since affNIST contains 320,000 images, this would generate 4 separate data files.
The dataset can also be downloaded from the source
by passing the --download=true
flag.
To train the model on the standard MNIST dataset:
python experiment.py --data_dir=/path/to/dataset/ \
--summary_dir=/path/to/log/dir --max_steps=30000 --dataset=mnist
--batch_size=128 --shift=2
To train on the expanded MNIST (40x40) for affNIST generalization:
python experiment.py --data_dir=/path/to/dataset/ \
--summary_dir=/path/to/log/dir --max_steps=30000 --dataset=mnist
--batch_size=128 --shift=6 --pad=6
Hyperparameters can be overriden using the hparams_override
flag, e.g.
--hparams_override=num_latent_capsules=24,num_atoms=16
. The flag should also be
used in the evaluation phase to ensure the model uses the expected parameters.
To generate the encoded representation for a single dataset, e.g. MNIST:
python experiment.py --data_dir=/path/to/mnist_data/ --train=False \
--checkpoint=/path/to/model.ckpt --summary_dir=/path/to/output \
--eval_set=train --eval_size=60000
To generate the encoded representation for a sharded dataset, e.g. affNIST:
python experiment.py --data_dir=/path/to/mnist_data/ --train=False \
--checkpoint=/path/to/model.ckpt --summary_dir=/path/to/output \
--eval_set=test --eval_size=80000 --eval_shard=0 --pad=6
The classifier automatically finds the appropriate input data that was generated by the encoder, so only the path to the encoded outputs is necessary.
Evaluate the encoded representation using SVM:
python classifier.py --data_dir=/path/to/outputs/dir \
--summary_dir=/path/to/log/dir --model=svm --dataset=mnist --last_step=30000
The SVM hyperparameters can also be overrided using a similar flag
svm_hparams_override
.
Thanks to Sabour et al. for open-sourcing the official Capsules model.