Skip to content

Cerenaut/sparse-unsupervised-capsules

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sparse Unsupervised Capsules

The official source code for the SPARSECAPS model, based on the original Capsules model by Sabour et al., used in the following paper:

Requirements

Quick Results

The checkpoint of the model trained on the expanded MNIST for affNIST generalizability is publicly available to skip the training step and easily reproduce the experimental results.

Usage

Dataset Generation

Scripts to build necessary the data for training and/or evaluating the model can be found in the input_data directory, for each dataset.

MNIST

To generate the shifted MNIST training set for training the model:

python mnist_shift.py --data_dir=PATH_TO_MNIST_DIRECTORY \
--split=train --shift=2 --pad=0

To generate the expanded MNIST training set for affNIST generalizability:

python mnist_shift.py --data_dir=PATH_TO_MNIST_DIRECTORY \
--split=train --shift=6 --pad=6

The test set can be generated in a similar way by using the following flags instead: --split=test --shift=0. The dataset can also be downloaded from the source by passing the --download=true flag.

affNIST

To generate the affNIST test set:

python affnist_shift.py --data_dir=PATH_TO_AFFNIST_DIRECTORY \
--split=test --shift=0 --pad=0

To generate the sharded affNIST test set to chunk the dataset over separate TFRecords files:

python affnist_shift.py --data_dir=PATH_TO_AFFNIST_DIRECTORY \
--split=test --shift=0 --pad=0 --max_shard=80000

The max_shard is the maximum number of images in a single TFRecords file, and since affNIST contains 320,000 images, this would generate 4 separate data files. The dataset can also be downloaded from the source by passing the --download=true flag.

Model Workflow

Training

To train the model on the standard MNIST dataset:

python experiment.py --data_dir=/path/to/dataset/ \
--summary_dir=/path/to/log/dir --max_steps=30000 --dataset=mnist
--batch_size=128 --shift=2

To train on the expanded MNIST (40x40) for affNIST generalization:

python experiment.py --data_dir=/path/to/dataset/ \
--summary_dir=/path/to/log/dir --max_steps=30000 --dataset=mnist
--batch_size=128 --shift=6 --pad=6

Hyperparameters can be overriden using the hparams_override flag, e.g. --hparams_override=num_latent_capsules=24,num_atoms=16. The flag should also be used in the evaluation phase to ensure the model uses the expected parameters.

Encoding

To generate the encoded representation for a single dataset, e.g. MNIST:

python experiment.py --data_dir=/path/to/mnist_data/ --train=False \
--checkpoint=/path/to/model.ckpt --summary_dir=/path/to/output \
--eval_set=train --eval_size=60000

To generate the encoded representation for a sharded dataset, e.g. affNIST:

python experiment.py --data_dir=/path/to/mnist_data/ --train=False \
--checkpoint=/path/to/model.ckpt --summary_dir=/path/to/output \
--eval_set=test --eval_size=80000 --eval_shard=0 --pad=6

Classification

The classifier automatically finds the appropriate input data that was generated by the encoder, so only the path to the encoded outputs is necessary.

Evaluate the encoded representation using SVM:

python classifier.py --data_dir=/path/to/outputs/dir \
--summary_dir=/path/to/log/dir --model=svm --dataset=mnist --last_step=30000

The SVM hyperparameters can also be overrided using a similar flag svm_hparams_override.

Acknowledgements

Thanks to Sabour et al. for open-sourcing the official Capsules model.

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages