Why This Project: Demonstrates the most advanced concepts while being practical. Combines streaming data, microservices, search, and real-time processing.
Business Use Case: A platform that ingests user events (clicks, purchases, page views), processes them in real-time, and provides analytics dashboards and alerts.
User Events → API Gateway → Quarkus Ingestion Service → RabbitMQ → Processing Services → Elasticsearch → Dashboard APIs
↓
Azure Blob (Raw Data Archive) + Azure Monitor (Observability)
- Event Ingestion Service (Quarkus) - Receives and validates events
- Event Processing Service (Quarkus) - Aggregates and enriches data
- Alert Service (Quarkus) - Monitors thresholds and sends notifications
- Query Service (Quarkus) - Serves analytics data
- Dashboard API (Quarkus) - Powers frontend dashboards
- Azure Kubernetes Service (AKS): Container orchestration
- Azure Container Registry (ACR): Docker image storage
- Azure Blob Storage: Raw event archival and cold storage
- Azure Key Vault: Secrets management (centralized secret storage)
- Azure Event Hub: High-throughput event streaming (alternative/complement to RabbitMQ)
- Azure Functions: Serverless compute for specific tasks
- Azure Monitor/Application Insights: Observability
- Azure Load Balancer: Traffic distribution
- Azure Database for PostgreSQL: Configuration and user data
Hybrid Event Processing:
- Azure Event Hub for ultra-high throughput event ingestion (millions of events/second)
- RabbitMQ for complex routing, workflows, and reliable processing
- Azure Functions for serverless event processing and transformations
Complete Observability Stack:
- Elastic APM + Kibana for detailed application performance monitoring
- Azure Application Insights for Azure-native monitoring
- OpenTelemetry as the unified observability standard
Security & Configuration:
- Azure Key Vault integration for all secrets, certificates, and sensitive configuration
- Dynamic configuration retrieval without hardcoded secrets
- Native Compilation: GraalVM for fast startup and low memory
- Reactive Programming: Mutiny for non-blocking operations
- Health Checks: Built-in health endpoints
- Metrics: Micrometer integration with Prometheus
- OpenAPI: Automatic API documentation
- Fault Tolerance: Circuit breakers and retry policies
- Event-driven: MicroProfile Reactive Messaging
- Topic Exchanges: Route events by type and priority
- Dead Letter Queues: Handle failed message processing
- Message TTL: Expire old messages
- Priority Queues: Process critical events first
- Publisher Confirms: Ensure message delivery
- Consumer Acknowledgments: Reliable processing
- Index Templates: Consistent mapping for time-series data
- Index Lifecycle Management: Automatic rollover and deletion
- Aggregations: Real-time analytics calculations
- Percolator Queries: Real-time alerting
- Alias Management: Zero-downtime index updates
- Cross-cluster Search: Scale across multiple clusters
# Create resource group
az group create --name analytics-platform-rg --location eastus
# Create AKS cluster
az aks create \
--resource-group analytics-platform-rg \
--name analytics-platform-aks \
--node-count 3 \
--node-vm-size Standard_D2s_v3 \
--enable-addons monitoring \
--generate-ssh-keys
# Create Azure Container Registry
az acr create \
--resource-group analytics-platform-rg \
--name analyticsplatformacr \
--sku Standard \
--admin-enabled trueCreate infrastructure modules:
modules/aks/- Kubernetes cluster configurationmodules/storage/- Blob storage and PostgreSQLmodules/networking/- VNet, subnets, security groupsmodules/monitoring/- Application Insights, Log Analytics
Create Helm charts for:
- RabbitMQ cluster with persistence
- Elasticsearch cluster with proper node roles
- PostgreSQL for application data
- Ingress controller with SSL termination
Responsibilities: Receive, validate, and route events
Key Features:
- Rate limiting per client
- Event schema validation
- Async publishing to RabbitMQ
- Batch processing for high throughput
Implementation Highlights:
@ApplicationScoped
public class EventIngestionService {
@Channel("events-out")
Emitter<EventMessage> eventEmitter;
@Timed(name = "event_ingestion_duration")
@Counted(name = "events_received_total")
public Uni<Void> ingestEvent(EventPayload payload) {
return validateEvent(payload)
.chain(this::enrichEvent)
.chain(this::publishEvent)
.onFailure().invoke(this::handleFailure);
}
}Responsibilities: Aggregate events, calculate metrics, detect anomalies
Key Patterns:
- Event Sourcing: Store all events immutably
- CQRS: Separate read/write models
- Windowing: Time-based aggregations
Processing Pipeline:
- Consume from RabbitMQ
- Apply business rules
- Update aggregations
- Store in Elasticsearch
- Trigger alerts if needed
Responsibilities: Monitor thresholds and send notifications
Alert Types:
- Threshold alerts (e.g., error rate > 5%)
- Anomaly detection (statistical outliers)
- Pattern matching (specific event sequences)
@Entity
public class EventStore {
private String aggregateId;
private String eventType;
private String eventData;
private LocalDateTime timestamp;
private Long version;
}
@ApplicationScoped
public class EventSourcingService {
public Uni<Void> appendEvent(String aggregateId, DomainEvent event) {
return persistEvent(aggregateId, event)
.chain(() -> publishEvent(event))
.chain(() -> updateProjections(event));
}
}- Command Side: Handle writes, validate business rules
- Query Side: Optimized read models in Elasticsearch
- Synchronization: Event-driven projection updates
@ApplicationScoped
public class DataProcessingSaga {
@Incoming("data-received")
public Uni<Void> onDataReceived(DataReceivedEvent event) {
return validateData(event)
.chain(() -> transformData(event))
.chain(() -> indexData(event))
.onFailure().invoke(() -> compensateTransaction(event));
}
}Metrics Collection:
- Custom business metrics (events/second, processing latency)
- JVM metrics (memory, GC, threads)
- Infrastructure metrics (CPU, memory, network)
Distributed Tracing:
- Jaeger integration
- Trace correlation across services
- Performance bottleneck identification
Logging Strategy:
- Structured logging with JSON format
- Correlation IDs for request tracking
- Centralized logging with ELK stack
Circuit Breaker:
@CircuitBreaker(
requestVolumeThreshold = 20,
failureRatio = 0.5,
delay = 5000
)
public Uni<ProcessingResult> processEvent(Event event) {
return externalService.process(event);
}Bulkhead Pattern:
- Separate thread pools for different operations
- Isolated resources for critical vs non-critical tasks
Retry with Backoff:
@Retry(
maxRetries = 3,
delay = 1000,
jitter = 500
)
public Uni<Void> sendNotification(Alert alert) {
return notificationService.send(alert);
}Index Design:
- Time-based indices (daily/weekly)
- Proper mapping for aggregations
- Index lifecycle management
Query Optimization:
- Use filters over queries when possible
- Implement caching for frequent queries
- Optimize aggregation performance
Performance Settings:
- Adjust prefetch count for consumers
- Use lazy queues for large backlogs
- Implement message deduplication
High Availability:
- Quorum queues for critical data
- Cross-AZ deployment
- Automatic failover configuration
Native Compilation:
- GraalVM native image for production
- Reflection configuration for libraries
- Build optimization flags
Resource Management:
- Connection pooling configuration
- Memory allocation tuning
- Garbage collection optimization
- OAuth2/JWT token validation
- Role-based access control (RBAC)
- API key management for external clients
- Encryption at rest (Azure Storage Service Encryption)
- Encryption in transit (TLS 1.3)
- PII data masking/anonymization
- Azure Network Security Groups
- Private endpoints for internal communication
- Web Application Firewall (WAF) rules
Unit Tests:
- Business logic validation
- Mock external dependencies
- Fast feedback loop
Integration Tests:
- Testcontainers for external services
- End-to-end workflow testing
- Performance regression tests
Contract Tests:
- Pact consumer/provider testing
- API schema validation
- Backward compatibility checks
Scenarios:
- Normal load (baseline performance)
- Peak load (2x normal traffic)
- Stress testing (breaking point)
- Endurance testing (sustained load)
Tools: JMeter, Gatling, or custom Quarkus test harness
# Azure DevOps Pipeline
stages:
- stage: Build
jobs:
- job: BuildServices
steps:
- task: Maven@3
inputs:
goals: 'clean compile test'
- task: Docker@2
inputs:
command: 'buildAndPush'
repository: '$(imageRepository)'
tags: '$(Build.BuildId)'
- stage: Deploy
jobs:
- deployment: DeployToStaging
environment: 'staging'
strategy:
runOnce:
deploy:
steps:
- task: HelmDeploy@0
inputs:
command: 'upgrade'
chartPath: './helm-charts'- Blue-Green Deployment: Zero-downtime updates
- Canary Releases: Gradual rollout with monitoring
- Feature Flags: Toggle features without deployment
- Anomaly detection using Azure ML
- Predictive analytics for capacity planning
- Real-time recommendation engine
- Tenant isolation strategies
- Resource quotas and billing
- Custom configurations per tenant
- Stream events to Azure Data Lake
- Historical data analysis
- Batch processing with Apache Spark
- Runbook creation
- Incident response procedures
- Capacity planning guidelines
- Backup and recovery strategies
- Establish SLA targets
- Create performance dashboards
- Set up alerting thresholds
- Document scaling procedures
Benefits: Complete audit trail, time-travel debugging, replay capability Implementation: Store all state changes as events, rebuild current state from events
Benefits: Optimized read/write models, independent scaling Implementation: Separate command handlers from query handlers
Benefits: Manage distributed transactions, failure recovery Implementation: Choreography-based sagas with compensating actions
Benefits: Prevent cascade failures, graceful degradation Implementation: Monitor failure rates, open circuit when threshold exceeded
Benefits: Fault isolation, resource protection Implementation: Separate thread pools and connection pools
Benefits: Reliable event publishing, transactional guarantees Implementation: Store events in database, separate publisher process
- Microservices Architecture: Service decomposition, inter-service communication
- Event-Driven Design: Async processing, eventual consistency
- Cloud-Native Development: Container deployment, cloud services integration
- Performance Engineering: Optimization techniques, scalability patterns
- Observability: Monitoring, logging, tracing strategies
- Security: Authentication, authorization, data protection
- Testing: Comprehensive test strategy, automation
- DevOps: CI/CD, infrastructure as code, deployment strategies
- Real-time Processing: Sub-second event processing
- Scalability: Handle 10K+ events/second
- Reliability: 99.9% uptime with fault tolerance
- Cost Efficiency: Auto-scaling based on demand
- Insights: Real-time analytics and alerting
- Cross-region replication
- Global load balancing
- Data consistency across regions
- Replace RabbitMQ with Kafka for higher throughput
- Kafka Streams for complex event processing
- Schema registry for event evolution
- Unified data access layer
- Real-time subscriptions
- Efficient data fetching
- Decentralized event routing
- Event catalog and governance
- Cross-team event sharing
This implementation showcases enterprise-grade backend development skills and demonstrates mastery of modern distributed systems patterns. The combination of technologies you suggested works excellently together and provides a solid foundation for building scalable, resilient systems.
analytics-platform/
│
├── README.md
├── .gitignore
├── docker-compose.yml # Local development environment
├── docker-compose.prod.yml # Production-like local setup
│
├── infrastructure/ # Infrastructure as Code
│ ├── terraform/
│ │ ├── main.tf
│ │ ├── variables.tf
│ │ ├── outputs.tf
│ │ └── modules/
│ │ ├── aks/
│ │ │ ├── main.tf
│ │ │ ├── variables.tf
│ │ │ └── outputs.tf
│ │ ├── acr/
│ │ ├── keyvault/
│ │ ├── eventhub/
│ │ ├── storage/
│ │ └── monitoring/
│ │
│ ├── kubernetes/ # K8s manifests
│ │ ├── namespaces/
│ │ ├── configmaps/
│ │ ├── secrets/
│ │ ├── deployments/
│ │ ├── services/
│ │ ├── ingress/
│ │ └── monitoring/
│ │
│ └── helm/ # Helm charts
│ ├── analytics-platform/
│ │ ├── Chart.yaml
│ │ ├── values.yaml
│ │ ├── values-dev.yaml
│ │ ├── values-prod.yaml
│ │ └── templates/
│ ├── rabbitmq/
│ ├── elasticsearch/
│ └── monitoring/
│
├── services/ # Microservices
│ │
│ ├── event-ingestion/ # Main event ingestion service
│ │ ├── src/
│ │ │ ├── main/
│ │ │ │ ├── java/
│ │ │ │ │ └── com/analytics/ingestion/
│ │ │ │ │ ├── EventIngestionApplication.java
│ │ │ │ │ ├── config/
│ │ │ │ │ │ ├── AzureConfig.java
│ │ │ │ │ │ ├── RabbitMQConfig.java
│ │ │ │ │ │ └── SecurityConfig.java
│ │ │ │ │ ├── controller/
│ │ │ │ │ │ ├── EventController.java
│ │ │ │ │ │ └── HealthController.java
│ │ │ │ │ ├── service/
│ │ │ │ │ │ ├── EventIngestionService.java
│ │ │ │ │ │ ├── ValidationService.java
│ │ │ │ │ │ └── PublishingService.java
│ │ │ │ │ ├── model/
│ │ │ │ │ │ ├── EventPayload.java
│ │ │ │ │ │ ├── EventMetadata.java
│ │ │ │ │ │ └── ValidationResult.java
│ │ │ │ │ ├── messaging/
│ │ │ │ │ │ ├── EventProducer.java
│ │ │ │ │ │ └── EventConsumer.java
│ │ │ │ │ └── exception/
│ │ │ │ │ ├── ValidationException.java
│ │ │ │ │ └── PublishingException.java
│ │ │ │ └── resources/
│ │ │ │ ├── application.yml
│ │ │ │ ├── application-dev.yml
│ │ │ │ ├── application-prod.yml
│ │ │ │ └── META-INF/
│ │ │ │ └── native-image/
│ │ │ └── test/
│ │ │ ├── java/
│ │ │ │ └── com/analytics/ingestion/
│ │ │ │ ├── EventIngestionServiceTest.java
│ │ │ │ ├── integration/
│ │ │ │ │ ├── EventIngestionIntegrationTest.java
│ │ │ │ │ └── TestContainersConfig.java
│ │ │ │ └── contract/
│ │ │ │ └── EventApiContractTest.java
│ │ │ └── resources/
│ │ │ ├── application-test.yml
│ │ │ └── test-data/
│ │ ├── pom.xml
│ │ ├── Dockerfile
│ │ ├── Dockerfile.native
│ │ └── .dockerignore
│ │
│ ├── event-processing/ # Event processing and aggregation
│ │ ├── src/
│ │ │ ├── main/
│ │ │ │ ├── java/
│ │ │ │ │ └── com/analytics/processing/
│ │ │ │ │ ├── EventProcessingApplication.java
│ │ │ │ │ ├── processor/
│ │ │ │ │ │ ├── EventProcessor.java
│ │ │ │ │ │ ├── AggregationProcessor.java
│ │ │ │ │ │ └── EnrichmentProcessor.java
│ │ │ │ │ ├── saga/
│ │ │ │ │ │ ├── DataProcessingSaga.java
│ │ │ │ │ │ └── CompensationHandler.java
│ │ │ │ │ ├── eventsourcing/
│ │ │ │ │ │ ├── EventStore.java
│ │ │ │ │ │ ├── EventSourcingService.java
│ │ │ │ │ │ └── ProjectionUpdater.java
│ │ │ │ │ └── cqrs/
│ │ │ │ │ ├── command/
│ │ │ │ │ │ ├── CommandHandler.java
│ │ │ │ │ │ └── ProcessEventCommand.java
│ │ │ │ │ └── query/
│ │ │ │ │ ├── QueryHandler.java
│ │ │ │ │ └── EventQueryService.java
│ │ │ │ └── resources/
│ │ │ │ └── application.yml
│ │ │ └── test/
│ │ ├── pom.xml
│ │ └── Dockerfile
│ │
│ ├── alert-service/ # Alerting and notifications
│ │ ├── src/
│ │ │ ├── main/
│ │ │ │ ├── java/
│ │ │ │ │ └── com/analytics/alerts/
│ │ │ │ │ ├── AlertServiceApplication.java
│ │ │ │ │ ├── detector/
│ │ │ │ │ │ ├── ThresholdDetector.java
│ │ │ │ │ │ ├── AnomalyDetector.java
│ │ │ │ │ │ └── PatternDetector.java
│ │ │ │ │ ├── notification/
│ │ │ │ │ │ ├── NotificationService.java
│ │ │ │ │ │ ├── EmailNotifier.java
│ │ │ │ │ │ └── SlackNotifier.java
│ │ │ │ │ └── resilience/
│ │ │ │ │ ├── CircuitBreakerConfig.java
│ │ │ │ │ └── RetryConfig.java
│ │ │ │ └── resources/
│ │ │ └── test/
│ │ ├── pom.xml
│ │ └── Dockerfile
│ │
│ ├── query-service/ # Analytics query API
│ │ ├── src/
│ │ │ ├── main/
│ │ │ │ ├── java/
│ │ │ │ │ └── com/analytics/query/
│ │ │ │ │ ├── QueryServiceApplication.java
│ │ │ │ │ ├── controller/
│ │ │ │ │ │ ├── AnalyticsController.java
│ │ │ │ │ │ └── MetricsController.java
│ │ │ │ │ ├── service/
│ │ │ │ │ │ ├── ElasticsearchService.java
│ │ │ │ │ │ └── QueryOptimizer.java
│ │ │ │ │ └── dto/
│ │ │ │ │ ├── QueryRequest.java
│ │ │ │ │ └── AnalyticsResponse.java
│ │ │ │ └── resources/
│ │ │ └── test/
│ │ ├── pom.xml
│ │ └── Dockerfile
│ │
│ └── dashboard-api/ # Dashboard backend API
│ ├── src/
│ │ ├── main/
│ │ │ ├── java/
│ │ │ │ └── com/analytics/dashboard/
│ │ │ │ ├── DashboardApiApplication.java
│ │ │ │ ├── controller/
│ │ │ │ ├── service/
│ │ │ │ └── websocket/
│ │ │ │ └── RealTimeDashboardWebSocket.java
│ │ │ └── resources/
│ │ └── test/
│ ├── pom.xml
│ └── Dockerfile
│
├── azure-functions/ # Serverless functions
│ ├── event-transformer/
│ │ ├── src/
│ │ │ └── main/
│ │ │ └── java/
│ │ │ └── com/analytics/functions/
│ │ │ ├── EventTransformerFunction.java
│ │ │ └── EventHubTriggerFunction.java
│ │ ├── pom.xml
│ │ └── host.json
│ │
│ └── data-archiver/
│ ├── src/
│ └── pom.xml
│
├── shared/ # Shared libraries
│ ├── common-models/
│ │ ├── src/
│ │ │ └── main/
│ │ │ └── java/
│ │ │ └── com/analytics/common/
│ │ │ ├── model/
│ │ │ │ ├── Event.java
│ │ │ │ ├── User.java
│ │ │ │ └── Tenant.java
│ │ │ ├── dto/
│ │ │ │ ├── EventDto.java
│ │ │ │ └── ResponseDto.java
│ │ │ └── constants/
│ │ │ ├── EventTypes.java
│ │ │ └── MessageQueues.java
│ │ └── pom.xml
│ │
│ ├── security/
│ │ ├── src/
│ │ │ └── main/
│ │ │ └── java/
│ │ │ └── com/analytics/security/
│ │ │ ├── jwt/
│ │ │ ├── oauth/
│ │ │ └── keyvault/
│ │ │ └── AzureKeyVaultClient.java
│ │ └── pom.xml
│ │
│ └── observability/
│ ├── src/
│ │ └── main/
│ │ └── java/
│ │ └── com/analytics/observability/
│ │ ├── tracing/
│ │ │ ├── TracingConfig.java
│ │ │ └── CustomTracer.java
│ │ ├── metrics/
│ │ │ ├── CustomMetrics.java
│ │ │ └── BusinessMetrics.java
│ │ └── logging/
│ │ ├── LoggingConfig.java
│ │ └── StructuredLogger.java
│ └── pom.xml
│
├── monitoring/ # Observability configuration
│ ├── elastic-apm/
│ │ ├── apm-server.yml
│ │ └── elasticsearch-template.json
│ │
│ ├── prometheus/
│ │ ├── prometheus.yml
│ │ └── alert-rules.yml
│ │
│ ├── grafana/
│ │ ├── dashboards/
│ │ │ ├── application-metrics.json
│ │ │ ├── business-metrics.json
│ │ │ └── infrastructure-metrics.json
│ │ └── datasources/
│ │ └── datasources.yml
│ │
│ └── kibana/
│ ├── index-patterns/
│ ├── visualizations/
│ └── dashboards/
│
├── config/ # Configuration files
│ ├── elasticsearch/
│ │ ├── index-templates/
│ │ │ ├── events-template.json
│ │ │ └── metrics-template.json
│ │ ├── index-policies/
│ │ │ └── lifecycle-policy.json
│ │ └── mappings/
│ │ ├── event-mapping.json
│ │ └── metric-mapping.json
│ │
│ ├── rabbitmq/
│ │ ├── definitions.json
│ │ ├── exchanges.json
│ │ └── queues.json
│ │
│ └── azure/
│ ├── eventhub-config.json
│ └── keyvault-config.json
│
├── docs/ # Documentation
│ ├── architecture/
│ │ ├── system-design.md
│ │ ├── data-flow.md
│ │ └── patterns.md
│ │
│ ├── deployment/
│ │ ├── local-setup.md
│ │ ├── azure-deployment.md
│ │ └── troubleshooting.md
│ │
│ ├── api/
│ │ ├── event-ingestion-api.md
│ │ ├── query-api.md
│ │ └── postman-collections/
│ │
│ └── runbooks/
│ ├── incident-response.md
│ ├── scaling-procedures.md
│ └── backup-recovery.md
│
├── scripts/ # Automation scripts
│ ├── build/
│ │ ├── build-all.sh
│ │ ├── build-native.sh
│ │ └── docker-build.sh
│ │
│ ├── deployment/
│ │ ├── deploy-dev.sh
│ │ ├── deploy-prod.sh
│ │ └── rollback.sh
│ │
│ ├── database/
│ │ ├── setup-elasticsearch.sh
│ │ └── create-indices.sh
│ │
│ └── local-dev/
│ ├── start-local.sh
│ ├── stop-local.sh
│ └── reset-data.sh
│
├── tests/ # Integration and E2E tests
│ ├── integration/
│ │ ├── src/
│ │ │ └── test/
│ │ │ └── java/
│ │ │ └── com/analytics/integration/
│ │ │ ├── EventFlowIntegrationTest.java
│ │ │ ├── AlertingIntegrationTest.java
│ │ │ └── QueryPerformanceTest.java
│ │ └── pom.xml
│ │
│ ├── performance/
│ │ ├── jmeter/
│ │ │ ├── event-ingestion-load-test.jmx
│ │ │ └── query-performance-test.jmx
│ │ ├── gatling/
│ │ │ └── EventIngestionSimulation.scala
│ │ └── reports/
│ │
│ └── contract/
│ ├── pacts/
│ └── consumer-tests/
│
├── ci-cd/ # CI/CD pipeline definitions
│ ├── azure-pipelines/
│ │ ├── build-pipeline.yml
│ │ ├── deploy-pipeline.yml
│ │ └── release-pipeline.yml
│ │
│ ├── github-actions/
│ │ ├── .github/
│ │ │ └── workflows/
│ │ │ ├── ci.yml
│ │ │ ├── cd.yml
│ │ │ └── security-scan.yml
│ │
│ └── jenkins/
│ └── Jenkinsfile
│
├── security/ # Security configurations
│ ├── policies/
│ │ ├── azure-policies.json
│ │ └── rbac-definitions.json
│ │
│ ├── certificates/
│ │ └── .gitkeep
│ │
│ └── scanning/
│ ├── sonarqube-config.xml
│ └── dependency-check-config.xml
│
├── data/ # Sample and test data
│ ├── sample-events/
│ │ ├── user-events.json
│ │ ├── system-events.json
│ │ └── error-events.json
│ │
│ ├── schemas/
│ │ ├── event-schema.json
│ │ └── metric-schema.json
│ │
│ └── migrations/
│ └── elasticsearch-mappings/
│
├── tools/ # Development tools
│ ├── code-generation/
│ │ ├── openapi-generator-config.json
│ │ └── generate-clients.sh
│ │
│ ├── local-dev/
│ │ ├── docker-compose-full.yml
│ │ ├── docker-compose-minimal.yml
│ │ └── env-templates/
│ │ ├── .env.development
│ │ └── .env.testing
│ │
│ └── debugging/
│ ├── log-analysis.sh
│ └── performance-profiling.sh
│
├── pom.xml # Parent POM for all services
├── .gitignore
├── .editorconfig
├── LICENSE
└── CHANGELOG.md
🏗️ Microservices Pattern: Each service in /services/ is independently deployable and scalable 🔄 Event-Driven Design: Clear separation between event ingestion, processing, and querying ☁️ Cloud-Native: Azure-first with Kubernetes orchestration and serverless components 📊 Observability-First: Comprehensive monitoring, tracing, and alerting built-in
Distributed Systems: Event sourcing, CQRS, saga patterns Scalability: Microservices, message queues, auto-scaling Resilience: Circuit breakers, retries, health checks Security: Azure Key Vault, OAuth2, secrets management
Infrastructure as Code: Terraform for Azure resources Container Orchestration: Kubernetes with Helm charts CI/CD: Azure DevOps and GitHub Actions pipelines Monitoring: Elastic APM, Prometheus, Grafana stack
Testing Strategy: Unit, integration, contract, and performance tests Documentation: Architecture docs, runbooks, API documentation Security: Policies, scanning, certificate management Compliance: Audit trails, data governance, backup procedures
Your Links Integration:
Azure Key Vault: Centralized in /shared/security/keyvault/ Azure Event Hub: Configuration in /config/azure/eventhub-config.json Elastic APM: Complete setup in /monitoring/elastic-apm/ Azure Functions: Serverless components in /azure-functions/
The structure shows this isn't just a learning project - it's a portfolio-worthy system that demonstrates the kind of architecture used in Fortune 500 companies for handling millions of events per day. Would you like me to dive deeper into any specific folder or show you how to set up a particular service from this structure?