-
-
CaptainBlackboard Public
船长关于机器学习、计算机视觉和工程技术的总结和分享
-
PyTorch_ONNX_TensorRT Public
Forked from RizhaoCai/PyTorch_ONNX_TensorRTA tutorial about how to build a TensorRT Engine from a PyTorch Model with the help of ONNX
-
Multitask-Learning Public
Forked from mbs0221/Multitask-LearningMultitask Learning Resources
UpdatedJan 14, 2020 -
utils Public
一些开发中好用的小工具,常用命令和小经验
-
pretrained-models.pytorch Public
Forked from Cadene/pretrained-models.pytorchPretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.
Python BSD 3-Clause "New" or "Revised" License UpdatedDec 20, 2019 -
Pytorch-Multi-Task-Multi-class-Classification Public
Forked from cinastanbean/Pytorch-Multi-Task-Multi-class-Classification旨在搭建一个分类问题在Pytorch框架下的通解,批量解决单任务多分类问题、多任务多分类问题。
-
-
mtan Public
Forked from lorenmt/mtanThe implementation of "End-to-End Multi-Task Learning with Attention" [CVPR 2019].
Python UpdatedOct 22, 2019 -
Dive-into-DL-PyTorch Public
Forked from ShusenTang/Dive-into-DL-PyTorch本项目将《动手学深度学习》原书中的MXNet代码实现改为PyTorch实现。
-
awsome-domain-adaptation Public
Forked from zhaoxin94/awesome-domain-adaptationA collection of AWESOME things about domian adaptation
MIT License UpdatedSep 8, 2019 -
awesome-semantic-segmentation Public
Forked from mrgloom/awesome-semantic-segmentation🤘 awesome-semantic-segmentation
2 UpdatedSep 6, 2019 -
apex Public
Forked from NVIDIA/apexA PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch
Python BSD 3-Clause "New" or "Revised" License UpdatedSep 1, 2019 -
faiss Public
Forked from facebookresearch/faissA library for efficient similarity search and clustering of dense vectors.
C++ MIT License UpdatedAug 28, 2019 -
ann-benchmarks Public
Forked from erikbern/ann-benchmarksBenchmarks of approximate nearest neighbor libraries in Python
-
cpp-taskflow Public
Forked from taskflow/taskflowModern C++ Parallel Task Programming Library
C++ Other UpdatedJul 23, 2019 -
flops-counter.pytorch Public
Forked from sovrasov/flops-counter.pytorchFlops counter for convolutional networks in pytorch framework
Python MIT License UpdatedJul 18, 2019 -
pytorchviz Public
Forked from szagoruyko/pytorchvizA small package to create visualizations of PyTorch execution graphs
-
ALiPy Public
Forked from NUAA-AL/ALiPyALiPy: Active Learning in Python is an active learning python toolbox, which allows users to conveniently evaluate, compare and analyze the performance of active learning methods.
-
EfficientDNNs Public
Forked from MingSun-Tse/Efficient-Deep-LearningCollection of recent methods on DNN compression and acceleration
-
toolbox Public
Forked from ming71/toolboxConversion from certain format to another, such as voc , coco , txt , labelme
Python UpdatedJun 25, 2019 -
HRNet-Facial-Landmark-Detection Public
Forked from HRNet/HRNet-Facial-Landmark-DetectionHigh-resolution representation learning (HRNets) for facial landmark detection
Python MIT License UpdatedJun 21, 2019 -
DeepLearning-500-questions Public
Forked from scutan90/DeepLearning-500-questions深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系scutjy2015@163.com 版权所有,违权必究 Tan 2018.06
-
FaceKit Public
Forked from Rock-100/FaceKitImplementations of PCN (an accurate real-time rotation-invariant face detector) and other face-related algorithms
C++ Other UpdatedJun 3, 2019 -
SRN Public
Forked from ChiCheng123/SRNSelective Refinement Network for High Performance Face Detection, AAAI, 2019
-
insightface Public
Forked from deepinsight/insightfaceFace Analysis Project on MXNet
Python MIT License UpdatedMay 30, 2019 -
SSD Public
Forked from lufficc/SSDHigh quality, fast, modular reference implementation of SSD in PyTorch 1.0
Python MIT License UpdatedMay 22, 2019 -
MNN Public
Forked from alibaba/MNNMNN is a lightweight deep neural network inference engine.
C++ UpdatedMay 17, 2019 -
kaggle Public
Forked from apachecn/InterviewKaggle 项目实战(教程) = 文档 + 代码 + 视频(欢迎参与)
-
pytorch-handbook Public
Forked from zergtant/pytorch-handbookpytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行