A state-of-the-art Video Frame Interpolation Method using deep semantic flows blending.
FeatureFlow: Robust Video Interpolation via Structure-to-texture Generation (IEEE Conference on Computer Vision and Pattern Recognition 2020)
- Preprint
- Training code
- Requirements
- Demos
- Installation
- Pre-trained Model
- Download Results
- Evaluation
- Test your video
- Citation
- Ubuntu
- PyTorch (>=1.1)
- Cuda (>=10.0) & Cudnn (>=7.0)
- mmdet 1.0rc (from https://github.com/open-mmlab/mmdetection.git)
- visdom (not necessary)
- NVIDIA GPU
Click the picture to Download one of them or click Here(Google) or Here(Baidu)(key: oav2) to download 360p demos.
360p demos(including comparisons):
720p demos:
- clone this repo
- git clone https://github.com/open-mmlab/mmdetection.git
- install mmdetection: please follow the guidence in its github
$ cd mmdetection
$ pip install -r requirements/build.txt
$ pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
$ pip install -v -e . # or "python setup.py develop"
$ pip list | grep mmdet- Download test set
$ unzip vimeo_interp_test.zip
$ cd vimeo_interp_test
$ mkdir sequences
$ cp target/* sequences/ -r
$ cp input/* sequences/ -r- Download BDCN's pre-trained model:bdcn_pretrained_on_bsds500.pth to ./model/bdcn/final-model/
$ pip install scikit-image visdom tqdm prefetch-generator
Baidu Cloud: ae4x
Place FeFlow.ckpt to ./checkpoints/.
Baidu Cloud: pc0k
$ CUDA_VISIBLE_DEVICES=0 python eval_Vimeo90K.py --checkpoint ./checkpoints/FeFlow.ckpt --dataset_root ~/datasets/videos/vimeo_interp_test --visdom_env test --vimeo90k --imgpath ./results/$ CUDA_VISIBLE_DEVICES=0 python sequence_run.py --checkpoint checkpoints/FeFlow.ckpt --video_path ./yourvideo.mp4 --t_interp 4 --slow_motion--t_interp sets frame multiples, only power of 2(2,4,8...) are supported. Use flag --slow_motion to slow down the video which maintains the original fps.
The output video will be saved as output.mp4 in your working diractory.
@InProceedings{FeatureFlow,
author = {Gui, Shurui and Wang, Chaoyue and Chen, Qihua and Tao, Dacheng},
title = {FeatureFlow: Robust Video Interpolation via Structure-to-texture Generation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
See MIT License






