This is the source code for my solution to the ChaLearn Face Anti-spoofing Attack Detection Challenge hosted by ChaLearn.
2019.3.29
: Final code is not ready, will update soon.
2019.3.10
: code upload for the origanizers to reproduce.
- imgaug==0.2.6
- scikit-image==0.14.0
- scikit-learn==0.19.2
- tqdm==4.23.4
- torch==0.4.1
- torchvision==0.2.1
download [models]
train model_A with color imgs, patch size 48:
CUDA_VISIBLE_DEVICES=0 python train_CyclicLR.py --model=model_A --image_mode=color --image_size=48
infer
CUDA_VISIBLE_DEVICES=0 python train_CyclicLR.py --mode=infer_test --model=model_A --image_mode=color --image_size=48
train model A fusion model with multi-modal imgs, patch size 48:
CUDA_VISIBLE_DEVICES=0 python train_Fusion_CyclicLR.py --model=model_A --image_size=48
infer
CUDA_VISIBLE_DEVICES=0 python train_Fusion_CyclicLR.py --mode=infer_test --model=model_A --image_size=48
unzip the models.zip in the root folder and infer all the trained models
run ensemble script submission.py to generate the final two submissions in phase2: (test_first.txt and test_second.txt)
python submission.py
If you find this work or code is helpful in your research, please cite:
@InProceedings{Shen_2019_CVPR_Workshops,
author = {Shen, Tao and Huang, Yuyu and Tong, Zhijun},
title = {FaceBagNet: Bag-Of-Local-Features Model for Multi-Modal Face Anti-Spoofing},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2019}
}
If you have any questions, feel free to E-mail me via: taoshen.seu@gmail.com