Skip to content

LSTMTimeStep forecast always descending or ascending consecutive numbers #528

@ByFede

Description

@ByFede

What is wrong?

Maybe it's something wrong in my code but I expected that every forecast for each day predict based on the past days not always a descending or ascending numbers from the first day.

Where does it happen?

  • Windows 10
  • Node.js v12.16.2
  • brain.js@2.0.0-alpha.12

How do we replicate the issue?

  • The data is normalized
  • At 60k interactions get errorThresh = 0.005
  • There is no error, just the forecast output always are descending or ascending consecutive numbers

Code sample:

const netOptions = {
	inputSize: 4,
	hiddenLayers: [20, 20],
	outputSize: 4
};

const net = new brain.recurrent.LSTMTimeStep(netOptions);

const trainingOptions = {
	iterations: 1000, 
	errorThresh: 0.002,
	learningRate: 0.005
};

const trainingData = [
  [
	...9k more data
    {
      close: 0.3672922007633208,
      open: 0.3753351139350292,
      high: 0.37622875109510723,
      low: 0.3603217093776281
    },
    {
      close: 0.37819481004120087,
      open: 0.37319032398229984,
      high: 0.3817694480470161,
      low: 0.36872204881640663
    }
  ]
];

const stats = net.train(trainingData, trainingOptions);

const toPredictData = [
		normalData.slice(-40, -20),
	];

const forecast = net.forecast([
	toPredictData[0][0],
	toPredictData[0][1],
	toPredictData[0][2],
	toPredictData[0][3],
	toPredictData[0][4],
	toPredictData[0][5],
	toPredictData[0][6],
	toPredictData[0][7],
	toPredictData[0][8],
	toPredictData[0][9],
	toPredictData[0][10],
	toPredictData[0][11],
	toPredictData[0][12],
	toPredictData[0][13],
	toPredictData[0][14],
	toPredictData[0][15],
	toPredictData[0][16],
	toPredictData[0][17],
	toPredictData[0][18],
	toPredictData[0][19],
], 20);

Output:

  • This is the output at 60k interactions with errorThresh 0.005.
  • Always are descending or ascending.
  • 'pre' = close value taken from the forecast result.
  • 'ori' = original close value from the data.

{
 "0": { "day": 0, "ori": 302.73999, "pre": 281.6479115675968,"err": 6.97 },
 "1": { "day": 1, "ori": 292.920013, "pre": 280.9524207791296, "err": 4.09 },
 "2": { "day": 2, "ori": 289.029999, "pre": 280.2686673253774, "err": 3.03 },
 "3": { "day": 3, "ori": 266.170013, "pre": 279.0121085019256, "err": 4.83 },
 "4": { "day": 4, "ori": 285.339996, "pre": 277.6469256257541, "err": 2.7 },
 "5": { "day": 5, "ori": 275.429993, "pre": 276.35117074444383, "err": 0.33 },
 "6": { "day": 6, "ori": 248.22999600000003, "pre": 275.1655046414833, "err": 10.86 },
 "7": { "day": 7, "ori": 277.970001, "pre": 274.0908452116006, "err": 1.4 },
 "8": { "day": 8, "ori": 242.21000700000002, "pre": 273.12002506404633, "err": 12.77 },
 "9": { "day": 9, "ori": 252.86000100000004, "pre": 272.246150223522, "err": 7.67 },
 "10": { "day": 10, "ori": 246.669998, "pre": 271.46433827126106, "err": 10.06 },
 "11": { "day": 11, "ori": 244.779999, "pre": 270.77152304827797, "err": 10.63 },
 "12": { "day": 12, "ori": 229.240005, "pre": 270.16577111674127, "err": 17.87 },
 "13": { "day": 13, "ori": 224.36999499999996, "pre": 269.6458130477715, "err": 20.2 },
 "14": { "day": 14, "ori": 246.880005, "pre": 269.2104184718396, "err": 9.05 },
 "15": { "day": 15, "ori": 245.520004, "pre": 268.8578297181895, "err": 9.51 },
 "16": { "day": 16, "ori": 258.440002, "pre": 268.5851954542616, "err": 3.93 },
 "17": { "day": 17, "ori": 247.740005, "pre": 268.3882972702414, "err": 8.34 },
 "18": { "day": 18, "ori": 254.809998, "pre": 268.2612176745839, "err": 5.28 },
 "19": { "day": 19, "ori": 254.289993, "pre": 268.19596903018686, "err": 5.47 }
}

How important is this (1-5)?

3

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions