Skip to content

Blue-No1/llm-research-notes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

llm-research-notes

Notes & lightweight experiments on LLMs, open-weight models, multimodal systems Ghi chú & thử nghiệm nhẹ về LLM, mô hình open-weight, hệ thống đa phương thức

Goals / Mục tiêu

  • Track learning & decisions clearly (theory → practice).
  • Build a minimal but solid stack for open-weight models (download, storage, inference)
  • Explore “core block / living core” integration as a state layer on top of base models

Scope / Phạm vi

  • Model: gpt-oss-120B, Llama 3/4, Mixtral (gguf), vLLM/Transformers/Ollama.
  • Infra: Vertex AI endpoints, Hugging Face Hub, Cloud Storage (GCS/S3), basic MLOps
  • Techniques: prompting, RAG, external agent state, light SFT/LoRA.

Progress Log / Tiến độ

  • [YYYY-MM-DD] Init repo & plan structure.
  • [YYYY-MM-DD] Notes on downloading open-weight models & storage strategy.
  • [YYYY-MM-DD] Vertex AI endpoint reading + cost model (per-token vs per-hour).

Update this section as you go / Cập nhật mục này khi bạn tiến hành.

Experiments / Thử nghiệm

  • Minimal inference with vLLM (local or cloud)
  • Compare memory/storage footprints (Dense vs MoE, quantization)
  • State management layer for “core block” (external orchestration)

References / Tham khảo

  • Hugging Face Hub docs, vLLM, Transformers
  • Vertex AI Docs (Model Garden, Endpoints)
  • Llama model cards & licenses

#LLA Research Notes

License

MIT

About

Notes & experiments on LLMs, open-weight models, multimodal systems, and cloud deployment.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages