-
Notifications
You must be signed in to change notification settings - Fork 37
imagenet_experiments #4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
timmyofmexico
wants to merge
1
commit into
Bihaqo:master
Choose a base branch
from
timmyofmexico:imagenet_experiments
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,153 @@ | ||
| function [net, info] = cnn_pass_imagenet_mat(net, imdb, getBatch, outputDir, varargin) | ||
| %CNN_PASS_IMAGENET_MAT pass data through the network | ||
|
|
||
| opts.train = [] ; | ||
| opts.val = [] ; | ||
| opts.numEpochs = 300 ; | ||
| opts.batchSize = 256 ; | ||
| opts.useGpu = false ; | ||
| opts.learningRate = 0.001 ; | ||
| opts.continue = false ; | ||
| opts.expDir = fullfile('data','exp') ; | ||
| opts.figuresPath = fullfile('data','figures','fig') ; | ||
| opts.conserveMemory = true ; | ||
| opts.sync = true ; | ||
| opts.prefetch = false ; | ||
| opts.weightDecay = 0.0005 ; | ||
| opts.useGpu = false; | ||
| opts.momentum = 0.9 ; | ||
| opts.errorType = 'multiclass' ; | ||
| opts.plotDiagnostics = false ; | ||
| opts = vl_argparse(opts, varargin) ; | ||
|
|
||
| if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end | ||
| if isempty(opts.train), opts.train = find(imdb.images.set==1) ; end | ||
| if isempty(opts.val), opts.val = find(imdb.images.set==2) ; end | ||
| if isnan(opts.train), opts.train = [] ; end | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Network initialization | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
|
|
||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Validate | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| rng(0) ; | ||
|
|
||
| if opts.useGpu | ||
| one = gpuArray(single(1)) ; | ||
| else | ||
| one = single(1) ; | ||
| end | ||
|
|
||
| startTime = tic; | ||
| info.train.objective = [] ; | ||
| info.train.error = [] ; | ||
| info.train.topFiveError = [] ; | ||
| info.train.speed = [] ; | ||
| info.val.objective = [] ; | ||
| info.val.error = [] ; | ||
| info.val.topFiveError = [] ; | ||
| info.val.speed = [] ; | ||
| info.time = [] ; | ||
| opts.expDir | ||
| res = [] ; | ||
| %---------------data saving data | ||
| dataDirMimic = outputDir; | ||
| if ~exist(dataDirMimic, 'dir') | ||
| mkdir(dataDirMimic); | ||
| end | ||
|
|
||
| if opts.useGpu | ||
| net = vl_simplenn_move(net, 'gpu') ; | ||
| end | ||
|
|
||
| for epoch=1:opts.numEpochs | ||
| val = opts.val ; | ||
|
|
||
| info.train.objective(end+1) = 0 ; | ||
| info.train.error(end+1) = 0 ; | ||
| info.train.topFiveError(end+1) = 0 ; | ||
| info.train.speed(end+1) = 0 ; | ||
| info.val.objective(end+1) = 0 ; | ||
| info.val.error(end+1) = 0 ; | ||
| info.val.topFiveError(end+1) = 0 ; | ||
| info.val.speed(end+1) = 0 ; | ||
| info.time(end+1) = 0; | ||
|
|
||
| % evaluation on validation set | ||
| lastProcessBatch = 1; | ||
| curBatchnumber = 0; | ||
| for t=lastProcessBatch:opts.batchSize:numel(val) | ||
| curBatchnumber = curBatchnumber + 1; | ||
| batch_time = tic ; | ||
| batch = val(t:min(t+opts.batchSize-1, numel(val))) ; | ||
| fprintf('validation: epoch %02d: processing batch %3d of %3d ...', epoch, ... | ||
| fix(t/opts.batchSize)+1, ceil(numel(val)/opts.batchSize)) ; | ||
| [im, labels] = getBatch(imdb, batch) ; | ||
| if opts.prefetch | ||
| nextBatch = val(t+opts.batchSize:min(t+2*opts.batchSize-1, numel(val))) ; | ||
| getBatch(imdb, nextBatch) ; | ||
| end | ||
| if opts.useGpu | ||
| im = gpuArray(im) ; | ||
| end | ||
|
|
||
| net.layers{end}.class = labels ; | ||
| opts.useGpu | ||
| [res, data_img] = vl_simplenn_imagenet_mat(net, im, [], res, ... | ||
| 'disableDropout', true, ... | ||
| 'conserveMemory', opts.conserveMemory, ... | ||
| 'sync', opts.sync) ; %#ok | ||
| lastProcessBatch = t; %#ok | ||
| save(fullfile(outputDir,'curBatch.mat'),'lastProcessBatch') | ||
| save(fullfile(outputDir, strcat('data_img', num2str(curBatchnumber))), 'data_img'); | ||
| % print information | ||
| batch_time = toc(batch_time) ; | ||
| speed = numel(batch)/batch_time; | ||
| info.val = updateError(opts, info.val, net, res, batch_time) ; | ||
| fprintf(' %.2f s (%.1f images/s)', batch_time, speed) ; | ||
| n = t + numel(batch) - 1 ; | ||
| if strcmp(opts.errorType, 'mse') | ||
| fprintf(' err %.5f\n', info.val.error(end)/n) ; | ||
| else | ||
| fprintf(' err %.1f err5 %.1f', ... | ||
| info.val.error(end)/n*100, info.val.topFiveError(end)/n*100) ; | ||
| fprintf('\n') ; | ||
| end | ||
| end | ||
|
|
||
| end | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| function info = updateError(opts, info, net, res, speed) | ||
| % ------------------------------------------------------------------------- | ||
| predictions = gather(res(end-1).x) ; | ||
| sz = size(predictions) ; | ||
| n = prod(sz(1:2)) ; | ||
|
|
||
| labels = net.layers{end}.class ; | ||
| info.objective(end) = info.objective(end) + sum(double(gather(res(end).x))) ; | ||
| info.speed(end) = info.speed(end) + speed ; | ||
| switch opts.errorType | ||
| case 'multiclass' | ||
| [~,predictions] = sort(predictions, 3, 'descend') ; | ||
| error = ~bsxfun(@eq, predictions, reshape(labels, 1, 1, 1, [])) ; | ||
| info.error(end) = info.error(end) +.... | ||
| sum(sum(sum(error(:,:,1,:))))/n ; | ||
| info.topFiveError(end) = info.topFiveError(end) + ... | ||
| sum(sum(sum(min(error(:,:,1:5,:),[],3))))/n ; | ||
| case 'binary' | ||
| error = bsxfun(@times, predictions, labels) < 0 ; | ||
| info.error(end) = info.error(end) + sum(error(:))/n ; | ||
| case 'mse' | ||
| error = predictions - labels; | ||
| info.error(end) = info.error(end) + sum(error(:).^2); | ||
|
|
||
| end | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
|
|
||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,81 @@ | ||
| function info = evaluate_imagenet_tt(varargin) | ||
| % evaluate_imagenet_tt evauate vgg16-tt models on imagenet | ||
| opts.data_path = fullfile('data', 'imagenet12','data_path') ; | ||
| opts.dataDir = fullfile('data', 'imagenet12') ; | ||
| opts.expDir = fullfile('data', 'imagenet12-eval-vgg-f') ; | ||
| opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); | ||
| opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-f.mat') ; | ||
| opts.lite = false ; | ||
| opts.numFetchThreads = 8 ; | ||
| opts.train.batchSize = 64 ; | ||
| opts.train.numEpochs = 1 ; | ||
| opts.train.gpus = [1]; | ||
| opts.train.prefetch = false ; | ||
| opts.train.expDir = opts.expDir ; | ||
|
|
||
| opts = vl_argparse(opts, varargin) ; | ||
| display(opts); | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Database initialization | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| if exist(opts.imdbPath) | ||
| imdb = load(opts.imdbPath) ; | ||
| else | ||
| imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; | ||
| mkdir(opts.expDir) ; | ||
| save(opts.imdbPath, '-struct', 'imdb') ; | ||
| end | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Network initialization | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| net = load(opts.modelPath) ; | ||
| net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss | ||
|
|
||
| % Synchronize label indexes between the model and the image database | ||
| imdb = cnn_imagenet_sync_labels(imdb, net); | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Stochastic gradient descent | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| data_path = fullfile(opts.data_path, 'data_img'); | ||
| getBatchWrapper = @(imdb,batch) getBatch(imdb, batch, data_path); | ||
| [net,info] = cnn_train(net, imdb, getBatchWrapper, opts.train, ... | ||
| 'conserveMemory', true, ... | ||
| 'train', NaN, ... | ||
| 'val', find(imdb.images.set==2)) ; | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| function [im,labels] = getBatch(imdb, batch, data_path) | ||
| % ------------------------------------------------------------------------- | ||
| %data_path = '../../data_permanent/data_imagenet_mimic_deep/data_img'; | ||
| sizeBatch = 64; | ||
| %batch(1) | ||
| for i = 1 : numel(batch) | ||
| %for val without train | ||
| nFile = ceil((batch(i) - 1281167) / 64); | ||
| %nEl = batch(i) - 64 * floor((batch(i) - 1281167) / 64); | ||
|
|
||
| % nFile = ceil(batch(i) / sizeBatch); | ||
| % fprintf('nFile %d\n', nFile); | ||
| batchData = load(strcat(data_path, num2str(nFile), '.mat')); | ||
| %batchData | ||
| batchData = batchData.data_img; | ||
| if i == 1 | ||
| im_size = size(batchData); | ||
| im_size(4) = numel(batch); | ||
| im =single(zeros(im_size)); | ||
| end | ||
| % batch(i) - (nFile + 20019-1 - 1) * sizeBatch | ||
| % batch(i) | ||
| %size(batchData) | ||
| %for val without train | ||
| im(:,:,:,i) = batchData(:,:,:, batch(i) - 15 - (nFile + 20019-1 - 1) * sizeBatch); | ||
| end | ||
| labels = imdb.images.label(batch) ; | ||
| %size(labels) | ||
| %size(im) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,64 @@ | ||
| function info = make_data_mat(varargin) | ||
| % MAKE_DATA_MAT pass data though the network and save it | ||
| opts.outputDir = fullfile('data', 'imagenet_TT','outputDir') ; | ||
| opts.dataDir = fullfile('data', 'imagenet_TT') ; | ||
| opts.expDir = fullfile('data', 'imagenet_TT') ; | ||
| opts.imdbPath = fullfile(opts.expDir, 'imdb.mat'); | ||
| opts.modelPath = fullfile('data', 'models', 'imagenet-vgg-deep-16.mat') ; | ||
| opts.lite = false ; | ||
| opts.numFetchThreads = 8 ; | ||
| opts.train.batchSize = 64 ; | ||
| opts.train.numEpochs = 1 ; | ||
| opts.train.useGpu = true; | ||
| opts.train.prefetch = false ; | ||
| opts.train.expDir = opts.expDir ; | ||
|
|
||
| opts = vl_argparse(opts, varargin) ; | ||
| display(opts); | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Database initialization | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| if exist(opts.imdbPath) | ||
| imdb = load(opts.imdbPath) ; | ||
| else | ||
| imdb = cnn_imagenet_setup_data('dataDir', opts.dataDir, 'lite', opts.lite) ; | ||
| mkdir(opts.expDir) ; | ||
| save(opts.imdbPath, '-struct', 'imdb') ; | ||
| end | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Network initialization | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| net = load(opts.modelPath) ; | ||
| net.layers{end}.type = 'softmaxloss' ; % softmax -> softmaxloss | ||
|
|
||
| % Synchronize label indexes between the model and the image database | ||
| imdb = cnn_imagenet_sync_labels(imdb, net); | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| % Stochastic gradient descent | ||
| % ------------------------------------------------------------------------- | ||
|
|
||
| fn = getBatchWrapper(net.normalization, opts.numFetchThreads) ; | ||
|
|
||
| [~,info] = cnn_pass_imagenet_mat(net, imdb, fn, opts.outputDir, opts.train, ... | ||
| 'conserveMemory', true, ... | ||
| 'train', NaN, ... | ||
| 'val', find(imdb.images.set == 2)) ; | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| function fn = getBatchWrapper(opts, numThreads) | ||
| % ------------------------------------------------------------------------- | ||
| fn = @(imdb,batch) getBatch(imdb,batch,opts,numThreads) ; | ||
|
|
||
| % ------------------------------------------------------------------------- | ||
| function [im,labels] = getBatch(imdb, batch, opts, numThreads) | ||
| % ------------------------------------------------------------------------- | ||
| images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; | ||
| im = cnn_imagenet_get_batch(images, opts, ... | ||
| 'numThreads', numThreads, ... | ||
| 'prefetch', nargout == 0) ; | ||
| labels = imdb.images.label(batch) ; |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,63 @@ | ||
| #!/bin/bash | ||
| # sudo apt-get update | ||
| # sudo apt-get install imagemagick | ||
| # Start in folder with original .tar files | ||
| #Before launch set PACKEDTRAINDIR and DATA_OUT | ||
| # Variables | ||
| PACKEDTRAINDIR=/home/ubuntu/tmp/train_packed | ||
| DATA_OUT=/home/ubuntu/imagenet_mimic | ||
| TRAINDIR=$DATA_OUT/images/train | ||
| VALDIR=$DATA_OUT/images/val | ||
|
|
||
| mkdir $DATA_OUT | ||
| mkdir $DATA_OUT/images | ||
| # Unpack main train archive | ||
| mkdir $PACKEDTRAINDIR | ||
| tar -xvf ILSVRC2012_img_train.tar -C $PACKEDTRAINDIR | ||
|
|
||
| # Unpack & resize nested train archives | ||
| mkdir $TRAINDIR | ||
|
|
||
| for NAME in $PACKEDTRAINDIR/*.tar; do | ||
| INDEX=$(basename $NAME .tar) | ||
| echo $INDEX | ||
| if test -d $TRAINDIR/$INDEX; then | ||
| echo "Folder "$TRAINDIR/$INDEX" exists" | ||
| else | ||
| mkdir $TRAINDIR/$INDEX | ||
| tar -xf $PACKEDTRAINDIR/$INDEX.tar -C $TRAINDIR/$INDEX | ||
| # Resize to height to 256, preserving the aspect ratio | ||
| mogrify -resize 256x256^ "$TRAINDIR/$INDEX/*.JPEG" | ||
| fi | ||
| done | ||
|
|
||
| # Validation | ||
| mkdir $VALDIR | ||
| tar -xf ILSVRC2012_img_val.tar -C $VALDIR | ||
| mogrify -resize 256x256^ "$VALDIR/*.JPEG" | ||
|
|
||
|
|
||
| # CMYK -> RGB. Important | ||
|
Owner
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can you please add a short comment explaining why this is needed? |
||
| mogrify -colorspace rgb $TRAINDIR/n03062245/n03062245_4620.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n04264628/n04264628_27969.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03961711/n03961711_5286.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n01739381/n01739381_1309.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n04258138/n04258138_17003.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03018349/n03018349_4028.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n04336792/n04336792_7448.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n02492035/n02492035_15739.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03544143/n03544143_17228.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03467068/n03467068_12171.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03633091/n03633091_5218.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n02447366/n02447366_23489.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03347037/n03347037_9675.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n02077923/n02077923_14822.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n02747177/n02747177_10752.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n04371774/n04371774_5854.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n07583066/n07583066_647.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n04596742/n04596742_4225.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n13037406/n13037406_4650.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03529860/n03529860_11437.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n03710637/n03710637_5125.JPEG | ||
| mogrify -colorspace rgb $TRAINDIR/n04033995/n04033995_2932.JPEG | ||
| mogrify -colorspace rgb $VALDIR/ILSVRC2012_val_00019877.JPEG | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think it's obsolete.