This page is for a paper which is to appear in CVPR2018 [1]. You can also find project page for the paper in [2].
Here is the example of our results in watercolor images.
- Python 3.5+
- Chainer 3.0+
- ChainerCV 0.8+
- Cupy 2.0+
- Matplotlib
Please go to both models
and datasets
directory and follow the instructions.
For more details about arguments, please refer to -h
option or the actual codes.
python demo.py input/watercolor_142090457.jpg output.jpg --gpu 0 --load models/watercolor_ssd300
python eval_model.py --root datasets/clipart --data_type clipart --det_type ssd300 --gpu 0 --load models/clipart_ssd300
python train_model.py --root datasets/clipart --subset train --result result --det_type ssd300 --data_type clipart --gpu 0
Work in progress..
If you find this code useful for your research, please cite our paper:
@inproceedings{InoueCVPR2018,
title={{Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation}},
author={Naoto Inoue and Ryosuke Furuta and Toshihiko Yamasaki and Kiyoharu Aizawa},
booktitle={CVPR},
year={2018},
}