Need GPU (cuda) access while deploying the model #30554
Description
I need assistance with deploying a pre-trained model. I have created a custom score.py file for the deployment process. However, the docker created on the CPU instance does not provide access to the GPU, which poses a problem for predicting with PyTorch or TensorFlow models as they require input to be converted to tensors loaded on the GPU. Can you suggest a solution?
My score.py script -
import something
# original = torch.load
# def load(*args):
# return torch.load(*args, map_location=torch.device("cpu"),pickle_module=None)
# def init():
# global model
# model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), "use-case1-model")
# # "model" is the path of the mlflow artifacts when the model was registered. For automl
# # models, this is generally "mlflow-model".
# with mock.patch("torch.load", load):
# model = mlflow.pyfunc.load_model(model_path)
# logging.info("Init complete")
def init():
global model
model_path = os.path.join(os.getenv("AZUREML_MODEL_DIR"), "use-case1-model")
model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))
logging.info("Init complete")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
def run(data):
json_data = json.loads(data)
title = json_data["input_data"]["title"]
att = json_data["input_data"]["attributes"]
result = {}
for i in range(len(title)):
my_dict = {}
for j in range(len(att)):
attr = att[i][j]
t, a = nobert4token(tokenizer, title[i].lower(), attr)
x = X_padding(t)
y = tag_padding(a)
tensor_a = torch.tensor(y, dtype=torch.int32)
tensor_a = torch.unsqueeze(tensor_a, dim=0).to("cuda")
tensor_t = torch.tensor(x, dtype=torch.int32)
tensor_t = torch.unsqueeze(tensor_t, dim=0).to("cuda")
output = model([tensor_t, tensor_a])
predict_list = output.tolist()[0]
my_dict[attr] = " ".join(words_p)
result[title[i]] = my_dict
return result
My invoke script-
ml_client.online_endpoints.invoke(
endpoint_name=endpoint_result.name,
deployment_name=green_deployment_uc1.name,
request_file=os.path.join("./dependencies", "sample.json"),
)
My conda.yaml-
channels:
- conda-forge
dependencies:
- python=3.8
- pip=22.1.2
- numpy=1.21.2
- scikit-learn=0.24.2
- scipy=1.7.1
- 'pandas>=1.1,<1.2'
- pytorch=1.10.0
- pip:
- 'inference-schema[numpy-support]==1.5.0'
- xlrd==2.0.1
- mlflow== 1.26.1
- azureml-mlflow==1.42.0
- tqdm==4.63.0
- pytorch-transformers==1.2.0
- pytorch-lightning==2.0.2
- seqeval==1.2.2
- azureml-inference-server-http==0.8.0
name: model-env
Error that I am getting -
127.0.0.1 - - [29/May/2023:10:03:32 +0000] "GET / HTTP/1.0" 200 7 "-" "kube-probe/1.18"
2023-05-29 10:03:34,291 E [70] azmlinfsrv - Encountered Exception: Traceback (most recent call last):
File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py", line 130, in invoke_run
run_output = self._wrapped_user_run(**run_parameters, request_headers=dict(request.headers))
File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py", line 154, in <lambda>
self._wrapped_user_run = lambda request_headers, **kwargs: self._user_run(**kwargs)
File "/var/azureml-app/dependencies/score.py", line 129, in run
tensor_a = torch.unsqueeze(tensor_a, dim=0).to("cuda")
File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/torch/cuda/__init__.py", line 247, in _lazy_init
torch._C._cuda_init()
RuntimeError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx
The above exception was the direct cause of the following exception:
If you think why I used "model = mlflow.pytorch.load_model(model_path, map_location=torch.device('cpu'))"
please refer to this forum- https://learn.microsoft.com/en-us/answers/questions/1291498/facing-problem-while-deploying-model-on-azure-ml-a
Documentation - https://learn.microsoft.com/en-us/azure/machine-learning/how-to-deploy-mlflow-models-online-endpoints?view=azureml-api-2&tabs=sdk