|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "%load_ext autoreload\n", |
| 10 | + "%autoreload 2\n", |
| 11 | + "from autora.doc.runtime.predict_hf import Predictor\n", |
| 12 | + "from autora.doc.runtime.prompts import INSTR, SYS, InstructionPrompts, SystemPrompts" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "metadata": {}, |
| 19 | + "outputs": [], |
| 20 | + "source": [ |
| 21 | + "# model = \"../../models\" # if model has been previously downloaded via huggingface-cli\n", |
| 22 | + "model = \"meta-llama/Llama-2-7b-chat-hf\"\n", |
| 23 | + "pred = Predictor(model)" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": null, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [], |
| 31 | + "source": [ |
| 32 | + "TEST_CODE = \"\"\"\n", |
| 33 | + "from sweetpea import *\n", |
| 34 | + "from sweetpea.primitives import *\n", |
| 35 | + "\n", |
| 36 | + "number_list = [125, 132, 139, 146, 160, 167, 174, 181]\n", |
| 37 | + "letter_list = ['b', 'd', 'f', 'h', 's', 'u', 'w', 'y']\n", |
| 38 | + "\n", |
| 39 | + "number = Factor(\"number\", number_list)\n", |
| 40 | + "letter = Factor(\"letter\", letter_list)\n", |
| 41 | + "task = Factor(\"task\", [\"number task\", \"letter task\", \"free choice task\"])\n", |
| 42 | + "\n", |
| 43 | + "\n", |
| 44 | + "def is_forced_trial_switch(task):\n", |
| 45 | + " return (task[-1] == \"number task\" and task[0] == \"letter task\") or \\\n", |
| 46 | + " (task[-1] == \"letter task\" and task[0] == \"number task\")\n", |
| 47 | + "\n", |
| 48 | + "\n", |
| 49 | + "def is_forced_trial_repeat(task):\n", |
| 50 | + " return (task[-1] == \"number task\" and task[0] == \"number task\") or \\\n", |
| 51 | + " (task[-1] == \"letter task\" and task[0] == \"letter task\")\n", |
| 52 | + "\n", |
| 53 | + "\n", |
| 54 | + "def is_free_trial_transition(task):\n", |
| 55 | + " return task[-1] != \"free choice task\" and task[0] == \"free choice task\"\n", |
| 56 | + "\n", |
| 57 | + "\n", |
| 58 | + "def is_free_trial_repeat(task):\n", |
| 59 | + " return task[-1] == \"free choice task\" and task[0] == \"free choice task\"\n", |
| 60 | + "\n", |
| 61 | + "\n", |
| 62 | + "def is_not_relevant_transition(task):\n", |
| 63 | + " return not (is_forced_trial_repeat(task) or is_forced_trial_switch(task) or is_free_trial_repeat(\n", |
| 64 | + " task) or is_free_trial_transition(task))\n", |
| 65 | + "\n", |
| 66 | + "\n", |
| 67 | + "transit = Factor(\"task transition\", [\n", |
| 68 | + " DerivedLevel(\"forced switch\", transition(is_forced_trial_switch, [task]), 3),\n", |
| 69 | + " DerivedLevel(\"forced repeat\", transition(is_forced_trial_repeat, [task])),\n", |
| 70 | + " DerivedLevel(\"free transition\", transition(is_free_trial_transition, [task]), 4),\n", |
| 71 | + " DerivedLevel(\"free repeat\", transition(is_free_trial_repeat, [task]), 4),\n", |
| 72 | + " DerivedLevel(\"forced first\", transition(is_not_relevant_transition, [task]), 4)\n", |
| 73 | + "])\n", |
| 74 | + "design = [letter, number, task, transit]\n", |
| 75 | + "crossing = [[letter], [number], [transit]]\n", |
| 76 | + "constraints = [MinimumTrials(256)]\n", |
| 77 | + "\n", |
| 78 | + "block = MultiCrossBlock(design, crossing, constraints)\n", |
| 79 | + "\n", |
| 80 | + "experiment = synthesize_trials(block, 1)\n", |
| 81 | + "\n", |
| 82 | + "save_experiments_csv(block, experiment, 'code_1_sequences/seq')\n", |
| 83 | + "\"\"\"" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "output = pred.predict(\n", |
| 93 | + " SYS[SystemPrompts.SYS_1],\n", |
| 94 | + " INSTR[InstructionPrompts.INSTR_SWEETP_EXAMPLE],\n", |
| 95 | + " [TEST_CODE],\n", |
| 96 | + " temperature=0.05,\n", |
| 97 | + " top_k=10,\n", |
| 98 | + " num_ret_seq=3,\n", |
| 99 | + ")[0]\n", |
| 100 | + "for i, o in enumerate(output):\n", |
| 101 | + " print(f\"******** Output {i} ********\\n{o}*************\\n\")" |
| 102 | + ] |
| 103 | + } |
| 104 | + ], |
| 105 | + "metadata": { |
| 106 | + "kernelspec": { |
| 107 | + "display_name": "autodoc", |
| 108 | + "language": "python", |
| 109 | + "name": "python3" |
| 110 | + }, |
| 111 | + "language_info": { |
| 112 | + "codemirror_mode": { |
| 113 | + "name": "ipython", |
| 114 | + "version": 3 |
| 115 | + }, |
| 116 | + "file_extension": ".py", |
| 117 | + "mimetype": "text/x-python", |
| 118 | + "name": "python", |
| 119 | + "nbconvert_exporter": "python", |
| 120 | + "pygments_lexer": "ipython3", |
| 121 | + "version": "3.8.18" |
| 122 | + } |
| 123 | + }, |
| 124 | + "nbformat": 4, |
| 125 | + "nbformat_minor": 2 |
| 126 | +} |
0 commit comments