This project extracts transcripts from YouTube videos using YouTubeTranscriptAPI or Whisper, then summarizes them using Groq's LLM. The app is built with Streamlit and runs in a Dockerized environment for easy deployment.
✅ Extracts YouTube transcripts automatically
✅ Uses Whisper for speech-to-text if transcripts are unavailable
✅ Summarizes content using Groq LLM
✅ Provides a simple Streamlit UI for easy interaction
✅ Dockerized for seamless deployment
📁 youtube-llm-summarizer
│── 📄 app.py # Streamlit UI for summarization
│── 📄 summarizer.py # Core logic for transcript extraction & summarization
│── 📄 Dockerfile # Docker configuration
│── 📄 docker-compose.yml # Docker Compose setup
│── 📄 .env # Environment variables
│── 📄 requirements.txt # Python dependencies
│── 📁 temp/ # Temporary storage for audio files
git clone https://github.com/ArchitJ6/youtube-llm-summarizer.git
cd youtube-llm-summarizer
Create a .env
file in the root directory and add your API keys:
GROQ_API_KEY=your_groq_api_key
docker-compose up --build
This will:
- Pull the necessary dependencies
- Set up the Streamlit app in a container
- Run the app on http://localhost:8501
- Open http://localhost:8501
- Enter a YouTube video URL
- Click "Summarize"
- View the generated summary
If you prefer to run locally:
pip install -r requirements.txt
streamlit run app.py
- Python 🐍
- Streamlit 📊
- YouTubeTranscriptAPI 🎥
- Whisper 🎙️
- Groq LLM 🧠
- Docker & Docker Compose 🐳
This project is licensed under the MIT License.