Our laboratory provides [Tools] for high-dimension, low-sample-size (HDLSS) data. Please read [License] and use tools only if you agree. For more details on the analytical method, please refer to relevant manuals and papers.
- Package Installation
- Tools
- License
Use the following command in the terminal to install packages locally.
git clone https://github.com/Aoshima-Lab/HDLSS-Tools.git
The "Noise-Reduction Methodology (NRM)" gives estimators of the eigenvalues, eigenvectors, and principal component scores.
Reference : K. Yata, M. Aoshima, Effective PCA for High-Dimension, Low-Sample-Size Data with Noise Reduction via Geometric Representations, Journal of Multivariate Analysis, 105 (2012) 193-215.
DOI: [10.1016/j.jmva.2011.09.002]
The "Cross-Data-Matrix (CDM) Methodology" gives estimators of the eigenvalues, eigenvectors, and principal component scores.
Reference : K. Yata, M. Aoshima, Effective PCA for High-Dimension, Low-Sample-Size Data with Singular Value Decomposition of Cross Data Matrix, Journal of Multivariate Analysis, 101 (2010) 2060-2077.
DOI: [10.1016/j.jmva.2010.04.006]
The "Automatic Sparse PCA (A-SPCA)" gives estimators of the eigenvalues and eigenvectors.
Reference : K. Yata, M. Aoshima, Automatic Sparse PCA for High-Dimensional Data, Statistica Sinica 35 (2025) (in press).
DOI: [10.5705/ss.202022.0319] [Supplement]
The "Extended Cross-Data-Matrix (ECDM) Methodology" gives an estimator of
Reference : K. Yata, M. Aoshima, High-Dimensional Inference on Covariance Structures via the Extended Cross-Data-Matrix Methodology, Journal of Multivariate Analysis, 151 (2016) 151-166.
DOI: [10.1016/j.jmva.2016.07.011]
The "PC-scores-based Outlier Detection (PC-OD)" identifies outliers based on the PC scores. The algorithm is provided in section 3.2 of Nakayama et al. (2024).
Reference : Y. Nakayama, K. Yata and M. Aoshima, Test for High-Dimensional Outliers with Principal Component Analysis, Japanese Journal of Statistics and Data Science (2024) (in print).
DOI : [10.1007/s42081-024-00255-0]
The "Distance-Based Discriminant Analysis (DBDA)" provides high-dimensional discriminant analysis for multiclass data. The algorithm is provided in Aoshima and Yata (2014).
Reference : M. Aoshima and K. Yata, A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data, Annals of the Institute of Statistical Mathematics (2014).
DOI : [10.1007/s10463-013-0435-8]
The "Geometrical quadratic discriminant analysis(GQDA)" provides high-dimensional discriminant analysis for multiclass data. The algorithm is provided in Aoshima and Yata (2015).
Reference : M. Aoshima and K. Yata, Geometric Classifier for Multiclass, High-Dimensional Data, Sequential Anal, 34, 279-294. (2015).
DOI : [10.1080/07474946.2015.1063256]
Copyright (C) <2024> <Makoto Aoshima>
This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International license.
To view a copy of this license, visit https://creativecommons.org/licenses/by-nd/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Makoto Aoshima, University of Tsukuba
aoshima@math.tsukuba.ac.jp
https://www.math.tsukuba.ac.jp/~aoshima-lab/index.html